首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface morphology of nanostructured polymer-based activated carbons   总被引:1,自引:0,他引:1  
Complementary techniques, including nitrogen adsorption, small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM), have been utilized to characterize the surface features of highly microporous carbon materials prepared from highly aromatic polymers. Nitrogen adsorption measurement interpreted by BET, DR, HK, and NLDFT methods reveals these nanostructured activated carbons exhibit a high surface area of up to 4000 m2/g, a micropore volume up to approximately 1.75 mL/g, and an average pore size of approximately 10-20 angstroms. A modified equation, based on Porod's law, the Debye-Bueche equation, and fractal dimension theories, has been proposed and successfully applied to analyze the SAXS spectra and to extract the porous texture of these unique activated carbons. AFM 3D imaging combined with the Fourier transform technique has been applied to statistically quantify pore sizes on the carbon surface.  相似文献   

2.
Wet silica gels with approximately 1.4 x 10(-3) mol SiO2/cm3 and approximately 92 vol % liquid phase were obtained from sonohydrolysis of tetraethoxysilane (TEOS) with different additions of isopropyl alcohol (IPA). The IPA/TEOS molar ratio R was changed from 0 to 4. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The wet gels exhibit mass fractal structure with fractal dimension increasing from D approximately 2.10 to D approximately 2.22, characteristic length xi decreasing from approximately 9.5 to approximately 6.9 nm, as R increases from 0 to 4, and an estimated characteristic length for the primary silica particles lower than approximately 0.3 nm. The supercritical process apparently eliminates a fraction of the porosity, increasing the mass fractal dimension and shortening the fractality domain in the mesopore region. The fundamental role of isopropyl alcohol on the structure of the resulting aerogels is to decrease the porosity and the pore mean size as R changes from pure TEOS to R = 4. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure, with correlated mass fractal dimension Dm approximately 2.7 and surface fractal dimension Ds approximately 2.3, as inferred from SAXS and nitrogen adsorption data.  相似文献   

3.
4.
Coupled with XRD, BET, and TEM, the small-angle X-ray scattering (SAXS) technique has been effectively used to probe and characterize the submicrostructure of freshly precipitated hydrous zirconia and its evolution during digestion. It has been found that fresh hydrous zirconia particles possess an average diameter of about 5 nm and rather rough surfaces describable in terms of fractal concepts. The digestion of zirconia precipitates at 100 degrees C with their mother liquors may remarkably smooth the particles' rough surface and provoke fractal aggregation of the particles but make little change in average particle dimensions. A local dissolution-reprecipitation mechanism is regarded as a basic process to accompany particle surface smoothing, particle aggregation, and coarsening at the neck areas between joint particles, which may greatly strengthen the particle networks and enhance their resistance to crumbling while calcinated at high temperatures. On the basis of the submicrostructural features unraveled by SAXS, a coherent and significant physical picture has been raised out to demonstrate and interpret the relationship underlying the submicrostructure, the surface area variation, and the heating behavior of hydrous zirconia precipitates.  相似文献   

5.
Mesoporous silica particles have been prepared by hydrolysis of TEOS (Si(OC2H5)4) in bicontinuous microemulsions containing polyoxyethylene (POE) dodecylether, isooctane and water. TEOS was dissolved in a continuous water phase and hydrolyzed by the dispersed water at around the phase inversion temperature (60°C). Undulating solid materials with layered mesostructures were produced from middle-phase microemulsions in the three phase region (o/w=0.2–0.7). On the other hand, the solids obtained from the lower aqueous phase in the three phase region were found to have a heterogeneous disordered structure. Measurements of the fractal dimensions were performed in the macropore region using a box-counting method for the outline of the SEM texture. We found that the macropore size distribution in the particles prepared from the middle-phase microemulsion follows the fractal rule with a dimension of 1.7. From the results of nitrogen adsorption/desorption curves on the silica, a steep increase in the adsorption amounts was observed at a relative pressure below 0.2, and adsorption/desorption hysteresis was also observed at a relative pressure between 0.3 and 0.5. These studies suggest that the silica synthesized in the bicontinuous microemulsion mesostructure has a very broad size range from micro to macropores with a fractal distribution.  相似文献   

6.
Theoretical and Experimental Chemistry - The fractal dimensions of nanodispersed zirconia determined by the BET and SAXS methods are compared. The fractal dimensions were shown to depend on the...  相似文献   

7.
Surface heterogeneity can be assessed by adsorption of different gaseous probes on solid materials. In the present study, four types of activated carbons were analyzed by classical N2 Brunauer-Emmett-Teller (BET) measurements and by low-pressure quasi-equilibrium volumetry (LPQEV) (Villieras, F.; Michot, L. J.; Bardot, F.; Cases, J. M.; Francois, M.; Rudzinski, W. Langmuir 1997, 13, 1104). Three methods of data evaluation were applied: (a) the Frenkel-Halsey-Hill method for estimation of fractal dimensions from BET data, (b) the Horwath-Kawazoe method to calculate the pore size distribution from LPQEV Ar and N2 adsorption isotherms, and (c) the derivative isotherm summation (DIS) method to describe the solid's surface heterogeneity by a concept of local derivative isotherms. Similar Ar and N2 adsorption energy distributions were obtained on all carbons, which indicates the presence of mainly nonpolar surfaces. When adsorption was described by the van der Waals equation, the ratio between the interaction energy of different energetic sites with argon and nitrogen was 0.88. This value corresponded very well with a slope obtained when Ar and N2 positions of local isotherms by the DIS method were compared. This relationship has an important impact because it enables one to constrain the modeling of local isotherms. This study, besides the surface information, showed large possibilities of the DIS method for the surface analysis not only in terms of solid heterogeneity characterization but also in terms of polarity assessment.  相似文献   

8.
The surface area is one of the most important quantities for characterizing novel porous materials. The BET analysis is the standard method for determining surface areas from nitrogen adsorption isotherms and was originally derived for multilayer gas adsorption onto flat surfaces. Metal-organic frameworks (MOFs) are a relatively new class of crystalline, porous materials that have been shown to exhibit very large BET surface areas. These materials are microporous and possess surfaces that are far from flat. In some MOFs, adsorption occurs through a pore-filling mechanism rather than by layer formation. Thus, it is unclear whether BET surface area numbers reported for these materials are truly meaningful. Given the standard practice of reporting BET surface areas for novel porous materials, a critical test of the BET method is much needed. In this work, grand canonical Monte Carlo simulations were used to predict adsorption isotherms for nitrogen in a series of MOFs. The predicted isotherms were used as pseudoexperimental data to test the applicability of the BET theory for obtaining surface areas of microporous MOFs. BET surface areas calculated from the simulated isotherms agree very well with the accessible surface areas calculated directly from the crystal structures in a geometric fashion. In addition, the surface areas agree well with experimental reports in the literature. These results provide a strong validation that the BET theory can be used to obtain surface areas of MOFs.  相似文献   

9.
The powder of polyaluminum chloride-humic acid (PACl-HA) flocs was prepared by cryofixation-vacuum-freeze-drying method. The FTIR spectra show that some characteristic functional groups in polyaluminum chloride (PACl), humic acid (HA), and kaolin still existed in the dried flocs. X-ray diffractometry (XRD) patterns indicate that these flocs are amorphous. Nitrogen adsorption-desorption isotherms were obtained for different samples of the dried PACl-HA flocs. The BET specific surface area, BJH cumulative absorbed volume and BJH desorption average pore diameter of them were determined. The peak values of 8.4-11.2 nm (pore diameter) for pore size distribution (PSD) curves indicate that the pores of the dried flocs are mostly mesopores. The surface fractal dimensions D(s) and the corresponding fractal scales determined from both SEM images and nitrogen adsorption-desorption data sets reveal the multi-scale surface fractal properties of the dried PACl-HA flocs, which exhibited two distinct fractal regimes: a regime of low fractal dimensions (2.07-2.26) at higher scales (23-387 nm), mainly belonging to exterior surface scales, and a higher fractal dimensions (2.24-2.37) at lower scales (0.80-7.81 nm), falling in pore surface scales. Both HA addition and kaolin reduction in dried floc can decrease the irregularity and roughness of external surface. However, for the irregularity and roughness of pore surface, the addition of HA or kaolin in dried floc can increase them. Furthermore, some difference was found between the pore surface fractal dimensions D(s) calculated from nitrogen adsorption and desorption data. The pore surface D(s) values calculated through thermodynamic model were much greater than three.  相似文献   

10.
A fractal analysis of three base catalyzed silica aerogels was performed using different experimental techniques: image analysis of electron micrographs, SAXS and study of pore size distribution determined from nitrogen adsorption isotherms. The aerogels appeared to exhibit self-similar properties over the range from 3–10 to 50–130 nm. The values of mass fractal dimension varied from 1.75 to 2.05 depending on the reactants concentration (TEOS, H2O) and were found to be similar irrespective of the method applied.  相似文献   

11.
Discrepancies in the results obtained during the adsorption of nitrogen, argon, and water on two mesoporous samples are compared and contrasted. A silica-based mesoporous oxide and the same sample coated with a film of polystyrene were chosen with respect to their different surface chemistries. The nitrogen BET surface is overestimated on the pure silica sample and underestimated for the polymer-coated sample. These differences can be related to the specific interaction (strong or weak) of nitrogen with these surfaces. Water has difficulty in wetting either surface. Moreover, in the case of the polymer-coated material, water is unable to fill the mesopores via capillary condensation.  相似文献   

12.
Growth and aging of silica aggregates are influenced both by temperature and by catalyzing fluorine ions as shown by SAXS and BET. It was found that both fluorine and increased temperature slightly increased the fractal dimension Df during aging, but the fluorine catalyzed system showed a lower BET surface area.To understand the effect of fluorine and increased temperature on the aggregates, 2D aggregations and SAXS simulations were carried out using two new programs GRASP and DALAI. In agreement with experiments it was found that binary RLCCA aggregates have a slightly higher Df value compared to DLCCA aggregates and that branch-flexibility during aging increases Df even further.  相似文献   

13.
Nitrogen adsorption measured at 77 K was used to characterize the surface heterogeneity of high-temperature superconductor surfaces. Properties relating to adsorption and porosity of the solids (adsorption capacity, specific surface area, radii and volume of the pores, pore-size distribution function) were determined from nitrogen adsorption–desorption isotherms and atomic force microscopy (AFM) for a series of oxide superconductors. It is shown that the adsorption isotherms of all samples are S-shaped and belong to type II according to the IUPAC classification. On the basis of the nitrogen adsorption isotherms and AFM data, fractal dimensions were determined and correlations found with adsorption and porosity parameters.  相似文献   

14.
Physico-chemical properties (adsorption capacity, desorption energy distribution and pore-size distribution functions) of nanomaterial surfaces from selected materials, based on sorptometric and liquid thermodesorption measurements under quasi-equilibrium conditions, are presented. The fractal dimensions of nanotubes using sorptometric and AFM data have been evaluated. Comparison of thermogravimetric and other data provide new information about the adsorption and pore structure of the studied materials. The fractal dimensions of nanomaterial surfaces using sorptometry are in good agreement with those from AFM.  相似文献   

15.
A SAXS/WAXS apparatus with the aid of a specially designed sample cell capable for performing both SAXS and WAXS experiments was used for adsorption studies in nanoporous materials. The applicability of the instrument for structural investigations and its ability for adsorption experiments because of the advanced sample environment were demonstrated by carrying out in situ SAXS measurements during gas physisorption. SAXS profiles of ordered mesoporous silica were measured at selected equilibrium points alongside a dibromomethane (CH2Br2) adsorption isotherm at 293 K. SBA-15 was the adsorbent of choice because it consists of a regular 2D hexagonal array of cylindrical mesopores that gives rise to Bragg reflections in the small-angle regime. CH2Br2 was selected as a contrast-matching fluid because it has almost the same electron density as silica. We obtained high-quality data comparable to those resulting from experiments performed in synchrotron light sources which produce intense beams of x-rays and support advanced instrumentation for high-resolution diffraction and SAXS studies. The Bragg peaks of the pore lattice are clearly visible for the evacuated sample and at the early stages of the adsorption process. The intensity decrease and the elimination of the Bragg peaks for the saturated sample suggest that an almost perfect contrast matching was achieved. A model has been used for monitoring the fluid condensation and evaporation regime in SBA-15 by taking into account both the Bragg scattering and the diffuse scattering for spatially random pore filling. The results show the absence of spatial correlations between filled pores suggesting random pore filling.  相似文献   

16.
Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2 nm) that decays exponentially. These results cannot be explained in terms of the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, which only considers two types of forces: the electrical double-layer repulsion and the London-van der Waals attraction. Although there is a controversy about the origin of the short-range repulsive force, the existence of a structured layer of water molecules at the silica surface is the most accepted explanation for it. The overlap of structured water layers of different surfaces leads to repulsive forces, which are known as hydration forces. This assumption is based on the very hydrophilic nature of silica. Different theories have been developed in order to reproduce the exponentially decaying behavior (as a function of the separation distance) of the hydration forces. Different mechanisms for the formation of the structured water layer around the silica surfaces are considered by each theory. By the aid of an AFM and the colloid probe technique, the interaction forces between silica surfaces have been measured directly at different pH values and salt concentrations. The results confirm the presence of the short-range repulsion at any experimental condition (even at high salt concentration). A comparison between the experimental data and theoretical fits obtained from different theories has been performed in order to elucidate the nature of this non-DLVO repulsive force.  相似文献   

17.
The internal surface structures of silica aerogel particles synthesized using different catalysts in emulsion and microemulsion media have been investigated by means of N(2) adsorption and desorption isotherms. Surface fractal dimensions have been computed using different methods: Frankel-Halsey-Hill plots of the adsorption isotherms, the thermodynamic fractal isotherm equation, and a modification of the thermodynamic fractal isotherm equation. Silica aerogels synthesized in emulsion media with an acidic catalyst have a high specific surface area without micropores and show two separate ranges of scales where the surface fractal dimensions are different and constant. Silica aerogels synthesized in emulsion media with a basic catalyst have a moderate specific surface area with a high percentage of micropores and show constant surface fractal dimensions over a larger range. Silica aerogels synthesized in microemulsion media with a basic catalyst have a low specific surface area with a moderate percentage of micropores and show a moderate range of scales over which the surface fractal dimension is constant. Analyses by both the thermodynamic and modified thermodynamic methods give similar ranges of the surface fractal dimensions of the silica particles. Copyright 2000 Academic Press.  相似文献   

18.
The frequency of collisions of ideal gas molecules (argon) with a rough surface has been studied. The rough/fractal surface was created using random deposition technique. By applying various depositions, the roughness of the surface was controlled and, as a measure of the irregularity, the fractal dimensions of the surfaces were determined. The surfaces were next immersed in argon (under pressures 2 x 10(3) to 2 x 10(5) Pa) and the numbers of collisions with these surfaces were counted. The calculations were carried out using a simplified molecular dynamics simulation technique (only hard core repulsions were assumed). As a result, it was stated that the frequency of collisions is a linear function of pressure for all fractal dimensions studied (D = 2, ..., 2.5). The frequency per unit pressure is quite complex function of the fractal dimension; however, the changes of that frequency with the fractal dimension are not strong. It was found that the frequency of collisions is controlled by the number of weakly folded sites on the surfaces and there is some mapping between the shape of adsorption energy distribution functions and this number of weakly folded sites. The results for the rough/fractal surfaces were compared with the prediction given by the Langmuir-Hertz equation (valid for smooth surface), generally the departure from the Langmuir-Hertz equation is not higher than 48% for the studied systems (i.e. for the surfaces created using the random deposition technique).  相似文献   

19.
Complementary techniques, including low-temperature nitrogen adsorption and small-angle X-ray scattering (SAXS), are applied to detect the effects of surface functionalization on the morphology of activated carbon derived from poly(ethylene terephthalate) (PET). Scanning electron microscopy (SEM) is also employed as an auxiliary method to visualize the surface below the micron scale. The SEM images reveal a micron-sized ridgelike texture. Room temperature acid treatment makes the ridges become more pronounced, while treatment with boiling acid uncovers fiberlike structures of roughly 1 microm diameter. All samples display an apparent surface fractal dimension of Ds = 2.4 in the wave vector range 0.001-0.02 A(-1). Nitric acid at room temperature increases the surface oxygen content only by 3 at. %, while all the adsorption properties and structural parameters reported in this paper are virtually unaffected. Significant differences in the morphology at submicron scales appear only after boiling acid treatment. The resulting carbon remains highly microporous, but the loss of Brunauer-Emmett-Teller (BET) surface area from about 1150 to 304 m2/g is approximately 75%. In addition to the principal peak at around 8 A, fresh peaks appear in the polydisperse Horvath-Kawazoe (HK) pore size distribution owing to the burnoff of intervening walls. The average width of the slitlike pores calculated from the Dubinin-Radushkevich (DR) plot increases from 8.4 to 11 A. The minimum slit width where the applied probe molecules, that is, nitrogen and hexane, can enter increases from about 5 to about 5.4 A. The separation distance of the basic structural units is practically unchanged. When, however, this carbon is in contact with hexane, this distance expands from about 19 to 27 A. The swelling is consistent with the deformable nature of this sample also illustrated by the low-pressure hysteresis and the reduced helium density. Particular attention was paid to the surface areas derived from low-temperature nitrogen adsorption and X-ray measurements. Owing to the wide spatial range of the structures in these samples, estimates of the specific surface area of activated carbons can be substantially in error unless both upper and lower q ranges of the SAXS spectra are taken into account. Surface areas derived from the adsorption data either by the BET or the DR approaches were always below the values obtained by standard SAXS. As an example, the carbon sample functionalized at room temperature gave surface area values of 1114, 1293, and 1970 m2/g, respectively. The possibility that this difference is caused by inaccessible pores was excluded by contrast variation measurements with hexane.  相似文献   

20.
The porous structure of MgB2 has been investigated using atomic force microscopy (AFM) and sorption techniques. The fractal dimension and surface roughness parameters were evaluated from (AFM) and nitrogen adsorption?Cdesorption isotherms measured at ?196?°C for MgB2 sample. Adsorption capacity, specific surface area, and fractal dimensions were determined from adsorption?Cdesorption isotherms. The sorption isotherms of MgB2 samples were S-shaped and belong to type II according to the IUPAC classification. The results of fractal dimensions of MgB2 surface determined on the basis sorptometry and AFM data are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号