首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ping Tong  Lan Zhang  Yu He  Guonan Chen 《Talanta》2009,77(5):1790-1294
A method based on the kinetics stability study on hydrolysis of chlorogenic acid by capillary zone electrophoresis with electrochemical detection (CE-ED) has been developed in this paper. Both cyclic and hydrodynamic voltammograms of chlorogenic acid and its hydrolysis product caffeic acid have been investigated. The conditions for separation of chlorogenic acid and caffeic acid, such as the buffer pH and concentration, the separation voltage, and the injection time have been optimized. Under the optimum CE running conditions, the effects of reaction temperature and pH values of the hydrolysis solutions on the hydrolysis rate constants were further studied. The hydrolysis rate constants of chlorogenic acid were obtained from the concentration change of hydrolysis during the process of hydrolysis. Based on the fact, a simple and economical method for the determination of the hydrolysis rate constant and activation energy of hydrolysis reaction has been developed.  相似文献   

2.
The hydroxide‐catalyzed hydrolysis of 3,6‐diacetylmorphine (heroin) was shown to take place predominantly via its positively charged form. N‐Methylated quaternary derivatives of heroin bearing a permanent positive charge were synthesized, and thus, hydrolysis kinetics of these cationic species could be studied over a wide pH range. Specific rate equations were introduced to characterize either the simultaneous or the consecutive decompositions. The kinetic constants determined for the diester are distinctive for the site of hydrolysis. The rate of 6‐acetyl‐N‐methylmorphine was quantified in terms of microscopic kinetic constants of hydrolysis, in which the protonation state of the phenolic OH group had also been taken into account. The site‐specific data indicate that the 3‐acetoxy moiety is hydrolyzed 6 – 12 times faster than the 6‐acetoxy function. The latter, previously ignored minor pathway was shown to represent a non‐negligible 10% of the overall decomposition process. Protonation of the 3‐O site accelerates the rate of hydrolysis of the 6‐acetoxy moiety by a factor of 4, and replacement of the adjacent OH group by MeO or AcO substituents slows the rate of hydrolysis slightly, presumably due to the increased local hydrophobicity caused by the alkyl or acyl moiety.  相似文献   

3.
A simple procedure has been developed and validated for the qualitative and quantitative analysis of several opiates (morphine, 6-acetylmorphine, codeine, 6-acetylcodeine) and tramadol in hair. The analytes were extracted from within the matrix via an overnight incubation with methanol at 65 °C, and afterwards the samples were cleaned up by mixed-mode solid-phase extraction. The extracts were derivatized with N-methyl-N-(trimethylsilyl) trifluoroacetamide with 5% trimethylchlorosilane and analyzed by gas chromatography–mass spectrometry in the selected ion monitoring mode. The method was linear from 0.05 (lower limit of quantitation) to 50 ng/mg (40 ng/mg for tramadol), with correlation coefficients higher than 0.99 for all compounds, accomplishing the cut-off values proposed by the Society of Hair Testing for the detection of these substances in hair (0.2 ng/mg). Intra- and interday precision and trueness were in conformity with the criteria normally accepted in bioanalytical method validation, and the sample cleanup step presented a mean efficiency higher than 90% for all analytes. Furthermore, using these incubation conditions, 6-acetylmorphine did not significantly hydrolyze to morphine. For these reasons, and because of its simplicity, the proposed method can be successfully applied in the determination of these compounds in hair samples, and is suitable for application in routine analysis with forensic purposes.  相似文献   

4.
Wei F  Liu SM  Xu L  Cheng GZ  Wu CT  Feng YQ 《Electrophoresis》2005,26(11):2214-2224
For analytes involved in dynamic equilibrium processes, capillary electrophoresis is a powerful method of determining binding constants. In this work, the complex formation between cucurbit[n]uril (CB[n] n = 6, 7) and some amino compounds was studied by capillary electrophoresis in aqueous formic acid (65% v/v). Four groups of positional and structural isomers (o, m, p-methylanilines; m, p-nitroanilines; benzidine and o-tolidine; alpha, beta-naphthylamines and 1,5-diaminonaphthalene) were selected as model compounds for study of their host-guest inclusion complexation. The interactions between CB[n] (n = 6, 7) and the model compounds were also investigated using a molecular modeling method. The results indicate that the interactions of the compounds with CB[n] (n = 6, 7) are strongly affected by the position of the substituent(s) on the aromatic ring and the ion-dipole interaction between guest molecule and CB. Furthermore, the type and the concentration of CBs on the separation and migration behavior of the amino compounds were also studied.  相似文献   

5.
We studied the stability of the Schiff bases formed between pyridoxal 5′-phosphate (PLP) and leucine in the presence of (hexadecyl)trimethylammonium bromide (CTAB) over a wide pH range by determining the kinetic constants of formation and hydrolysis of these compounds. The results show that the stability of the Schiff bases is increased by the presence of CTAB as a result of increased rates of formation and decreased hydrolysis rate constants. The ionic head groups of CTAB favour the formation of the bases, while its hydrophobic rests protect the imine double bond from hydrolysis. This model system permits one to obtain partially hydrophobic media with no need for any non-aqueous solvents.  相似文献   

6.
A kinetic study was carried out on the acetalization reaction of 1,3-butanediol, as a model compound for poly(vinyl alcohol) (PVA), in water, under acidic conditions. Since these equilibrium constants of ketalization reaction of 1,3-butanediol and ethylene glycol are so small, the kinetic parameters were estimated from the hydrolysis reactions of the corresponding ketals. It was made clear that these reactions proceed in the reversible bimolecular reaction, and the heat of reaction and activation energy are nearly equal to that of PVA. The rate constants of hydrolysis reaction (k′s) of model compounds were calculated on the basis of value of acetone ketal, Hammett-Taft's equation log k′s/k′so – 0.54(n – 6) = ρ*σ* was established, and the value of ρ* was obtained (3.60), which coincided with the value of PVA. Therefore, it was made clear that the hydrolysis reactions of acetals and ketals are electrophilic reaction (SE II reaction) and the step of rate determination is the formation of hemiacetal and hemiketal. The rate constants of hydrolysis reaction of 1,3-butanediol acetals and ketals were approximately 10–20 larger, and those of ethylene glycol were approximetly 50–80 larger except for ketals, and those of ethanol were roughly 2000–10,000 larger compared with that of high-molecular weight compound (PVA). It can be well explained that these differences in the rate constant depend on their entropy and the mobility of molecules. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1719–1931, 1997  相似文献   

7.
In-line solid-phase extraction–capillary electrophoresis coupled with mass spectrometric detection (SPE–CE–MS) has been used for determination of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), codeine (COD), hydrocodeine (HCOD), and 6-acetylmorphine (6AM) in urine. The preconcentration system consists of a small capillary filled with Oasis HLB sorbent and inserted into the inlet section of the electrophoresis capillary. The SPE–CE–MS experimental conditions were optimized as follows: the sample (adjusted to pH 6.0) was loaded at 930 mbar for 60 min, elution was performed with methanol at 50 mbar for 35 s, 60 mmol L−1 ammonium acetate at pH 3.8 was used as running buffer, the separation voltage was 30 kV, and the sheath liquid at a flow rate of 5.0 μL min−1 was isopropanol–water 50:50 (v/v) containing 0.5% acetic acid. Analysis of urine samples spiked with the four drugs and diluted 1:1 (v/v) was studied in the linear range 0.08–10 ng mL−1. Detection limits (LODs) (S/N = 3) were between 0.013 and 0.210 ng mL−1. Repeatability (expressed as relative standard deviation) was below 7.2%. The method developed enables simple and effective determination of these drugs of abuse in urine samples at the levels encountered in toxicology and doping.  相似文献   

8.
The kinetics of the alkaline hydrolysis of 2-phenyl-6-, -7-, and -8-ethoxycarbonylindolizines were studied. The rate constants for the hydrolysis of these compounds and the indexes of the dissociation constants of 2-phenylindolizine-6-,-7-, and -8-carboxylic acids were determined by spectrophotometry. The indexes of the electronic structures and reactivities of 2-methyl-6-, -7-, and -8-ethoxycarbonylindolizines were calculated from theory.See [1] for Communication [5].Deceased.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 627–633, May, 1979.  相似文献   

9.
A method based on capillary electrophoresis with electrochemical detection (CE-ED) to calculate the rate constants and activation energy of 3-chloro-1,2-propanediol (3-MCPD) hydrolysis was described. Effects of several factors, such as the pH value and the concentration of the running buffer, separation voltage, injection time and the potential applied to the working electrode, were investigated to find the optimum conditions. With a 50 cm length of 25 microm diameter fused-silica capillary at a separation of 10 kV, well-defined separation of 3-chloro-1,2-propanediol from glycerol was achieved in 30 mmol/l borax (pH 9.24) within 13 min. Operated in a wall-jet configuration, a 328 microm copper-disk electrode used as the working electrode exhibits good response at 0.65 V (versus SCE) for 3-MCPD and glycerol. The rate constants of 3-MCPD hydrolysis at different temperatures were determined by monitoring the concentration changes of 3-MCPD. At 80, 85 and 90 degrees C, the measured rate constants of 3-MCPD hydrolysis were 3.8 x 10(-3) min(-1), 7.1 x 10(-3) min(-1) and 11.5 x 10(-3) min(-1), respectively. The activation energy for 3-MCPD hydrolysis was calculated to be 118.1 kJ/mol, which is in good agreement with the value in the literature.  相似文献   

10.
A theoretical investigation was carried out on the retention and separation of enantiomeric molecules including nonsteroidal anti-inflammatory drugs, anti-neoplastic compounds and N-derivatized amino acids by capillary electrophoresis using macrocyclic antibiotics, a new class of chiral selectors, as stationary phase. Firstly docking methods were used to study the enantiorecognition in chiral electrophoresis. The molecular dynamics simulations of the two diastereoisomer complexes were then performed in order to understand how these antibiotics recognize the enantiomers. Another approach was applied in this study to establish a quantitative structure-enantioselectivity relationship (QSER) model, able to describe the resolution of a series of chiral compounds in capillary electrophoresis using vancomycin as the resolving agent.  相似文献   

11.
Thermodynamic acidity constants and limiting ionic mobilities were determined for polyprotic non-chromophore analytes using capillary electrophoresis with capacitively coupled contactless conductivity detection. It was not necessary to work with buffers of identical ionic strength as ionic strength effects on effective electrophoretic mobilities were corrected by modeling during data evaluation (software AnglerFish). The mobility data from capillary electrophoresis coupled to conductivity detection were determined in the pH range from 1.25 to 12.02 with a high resolution (36 pH steps). With this strategy, thermodynamic acidity constants and limiting ionic mobilities for various acidic herbicides were determined, sometimes for the first time. The model analytes included glyphosate, its metabolites, and its acetylated derivates (aminomethyl phosphonic acid, glyoxylic acid, sarcosine, glycine, N-acetyl glyphosate, N-acetyl aminomethyl phosphonic acid, hydroxymethyl phosphonic acid). The obtained data were used in simulations to optimize separations by capillary electrophoresis. Simulations correlated very well to experimental results. With the new method, the separation of glyphosate from interfering components like phosphate in beer samples was possible.  相似文献   

12.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

13.
《Electrophoresis》2017,38(8):1188-1200
To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte‐cyclodextrin‐complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β‐cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x ‐reciprocal, y ‐reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β‐cyclodextrin, (2‐hydroxypropyl)‐β‐cyclodextrin, methyl‐β‐cyclodextrin and 6‐O‐α‐maltosyl‐β‐cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer‐cyclodextrin‐complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β‐cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes.  相似文献   

14.
Rapid methods for characterizing soy proteins and their hydrolysates by free-zone capillary electrophoresis were developed. The 7S- and 11S-rich protein fractions were separated by capillary electrophoresis (CE). The relationships between degrees of hydrolysis and electropherograms were established. Protein hydrolysates were separated in less than 6 min. Data showed that the CE method can be used effectively for monitoring protein hydrolysis during processing and for fingerprinting various types of protein products.  相似文献   

15.
Research on the structure–activity relationships of molecules with acidic carbon atoms led us to undertake a feasibility study on the determination of their acidity constants by capillary electrophoresis (CE). The studied molecules had diverse structures and were tetronic acid, acetylacetone, diethylmalonate, Meldrums acid, 3-methylrhodanine, nitroacetic acid ethyl ester, pyrimidine-2,4,6-trione, 3-oxo-3-phenylpropionic acid ethyl ester, 1-phenylbutan-1,3-dione, 5,5-dimethylcyclohexan-1,3-dione and homophthalic anhydride. The pKa range explored by CE was therefore very large (from 3 to 12) and pKa values near 12 were evaluated by mathematical extrapolations. The analyses were carried out in CZE mode using a fused silica capillary grafted (or not) with hexadimethrine. Owing to the electrophoretic behaviour of these compounds according to the pH, their acidity constants could be evaluated and appeared in perfect agreement with the literature data obtained, a few decades ago, by means of potentiometry, spectrometry or conductimetry. The pKa of homophthalic anhydride and 3-methylrhodanine were evaluated for the first time.  相似文献   

16.
Alternating copolymers that contain maleic anhydride (MAn) as a component occur in two different stereochemical configurations which are differentiated by their reactivity. Model compounds, 2, 3-dialkylsuccinic acids and their anhydrides, were investigated and it was demonstrated that there is a distinct difference between threo and erythro configurations in their chemical and physical behavior. Both configurations also occur in the alternating copolymers. Beside the model compounds, the alternating copolymers ethylene-MAn, propylene-MAn, and styrene-MAn were investigated in their reactions with amines, alcohols, and water (hydrolysis). The cis configurations showed the higher reaction rates. Reactions of the anhydride moieties with equimolar amounts of aniline, ethanol, and water demonstrated that reactions follow second-order rate laws. With excess reactant, the reaction follows a pseudo-first-order rate law. The rate constants depend on the degree of polymerization and on the comonomer. Increasing steric hindrance and molecular weight lead to a decrease of the reaction rate. Catalysis of the hydrolysis reaction by tertiary amines results in similar rate constants for the configurations of the substituted succinic acid anhydrides. The reasons are discussed.  相似文献   

17.
毛细管电泳用于瑞香苷水解常数的研究   总被引:1,自引:1,他引:0  
采用毛细管电泳-紫外检测法对瑞香苷进行了水解动力学研究.瑞香素是瑞香苷的水解产物.考察了瑞香苷(DN)和瑞香素(DP)的紫外吸收随水解反应过程的进行而发生的变化,计算得水解的速率常数,并总结了酸度和温度对速率常数的影响规律.当盐酸浓度为1.0 mol/L,温度为333、347、351、363、371 K时的水解常数分别为1.1×10-3、4.6×10-3、6.6×10-3、17.3×10-3、33.5×10-3min-1.同时,根据阿仑尼乌斯公式计算该反应的活化能为91.62 kJ/mol.此法用于测定瑞香苷水解常数简便、直观.  相似文献   

18.
The sol-gel method is a widely used technique for the synthesis of various functional coating films. Alkoxysilanes such as (3-methacryloxypropyl)trimethoxysilane (MEMO) are largely used as precursors for inorganic-organic hybrid sol-gel materials. Indeed, these compounds can form complex network, through hydrolysis and condensation reactions. The latter have to be perfectly controlled to obtain the required properties. In such a context, we have studied the potentialities of capillary electrophoresis-ion-trap mass spectrometry (CE-MS) coupling to resolve both separation and characterization of the synthesized compounds as a function of the hydrolysis time. The study of acid hydrolysis of MEMO was carried out as an example. After optimization of the running electrolyte in capillary zone electrophoresis (CZE) with UV detection, we characterized the synthesized compounds in CE-MS by using positive detection mode. The obtained resolution in CZE-UV was not entirely satisfactory because of the very closed charge/mass ratio of formed solute but also because of the interaction between the solutes and the capillary walls. Nevertheless, several oligomers were characterized in CE-MS. The absence of detection with regard to oligomers that possess higher molecular masses than octamer is discussed in this work.  相似文献   

19.
The single-isomer polyanionic cyclodextrin (CD) derivative heptakis-6-sulfato-beta-cyclodextrin (HSbetaCD) has been tested as chiral additive for the enantioseparation of non-steroidal anti-inflammatory drugs, such as fenoprofen, flurbiprofen, ibuprofen and ketoprofen, in capillary electrophoresis, using a pH 2.5 phosphoric acid-triethanolamine buffer in the reversed polarity mode. In most cases, the enantiomers of these acidic compounds, present in uncharged form at that pH, were only poorly resolved with HSbetaCD alone. However, the use of HSbetaCD in combination with the neutral CD derivative, heptakis-(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD), which has a particularly high enantioselectivity towards these compounds, has led to complete enantioresolution in reasonably low migration times in most cases. Affinity constants for the enantiomers with the two cyclodextrins were determined, using linear regression in a two-step approach. Affinity constants with the charged HSbetaCD were first calculated in single systems while those with the neutral TMbetaCD were determined in dual systems. Selectivity for the enantiomeric separation of these compounds in dual CD systems could be predicted using recently developed mathematical models.  相似文献   

20.
We report a simple and highly sensitive method for the simultaneous detection of trace zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate by capillary electrophoresis with inductively coupled plasma mass spectrometry. Zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate were chelated with trans‐1,2‐diaminocyclohexane‐N,N,N′,N′‐tetraacetic acid to form a macromolecule complex. Then, these two compounds were separated by α‐cyclodextrin‐modified capillary electrophoresis within 12 min at a separation voltage of 15 kV and measured by inductively coupled plasma mass spectrometry. The developed method is sensitive with detection limit of 1.9 and 3.0 ng Zn/mL for zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate, respectively. By means of ultrasound‐assisted extraction methods, zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate spiked into cabbage leaves were successfully extracted and determined with a relative standard deviation (= 5) ≤ 6% and a recovery of 95–107%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号