首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
任伟  高源慈  李唐  &  吕德胜  刘亮 《中国物理 B》2016,25(6):60601-060601
The performance of space cold atom clocks(SCACs) should be improved thanks to the microgravity environment in space.The microwave interrogation cavity is a key element in a SCAC.In this paper,we develop a microwave interrogation cavity especially for the rubidium SCAC.The interrogation cavity has two microwave interaction zones with a single feedin source,which is located at the center of the cavity for symmetric coupling excitation and to ensure that the two interaction zones are in phase.The interrogation cavity has a measured resonance frequency of 6.835056471 GHz with a loaded quality factor of nearly 4200,which shows good agreement with simulation results.We measure the Rabi frequency of the clock transition of the rubidium atom in each microwave interaction zone,and subsequently demonstrate that the distributions of the magnetic field in the two interaction zones are the same and meet all requirements of the rubidium SCAC.  相似文献   

2.
冷原子干涉仪及空间应用   总被引:1,自引:0,他引:1  
原子干涉仪是利用原子物质波的特性而实现的干涉仪,冷原子具有很小的速度和速度分布以及良好的相干性,因而冷原子干涉仪具有很高的灵敏度.文章介绍了原子干涉仪的基本物理原理、国内外研究进展、原子干涉仪实现方案及其在精密测量和空间科学领域中的应用.  相似文献   

3.
王谨  詹明生  李润兵 《物理》2008,37(09):652-657
原子干涉仪是利用原子物质波的特性而实现的干涉仪,冷原子具有很小的速度和速度分布以及良好的相干性,因而冷原子干涉仪具有很高的灵敏度.文章介绍了原子干涉仪的基本物理原理、国内外研究进展、原子干涉仪实现方案及其在精密测量和空间科学领域中的应用.  相似文献   

4.
We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled 133Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements by 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.  相似文献   

5.
In this article, the interest of space environment for cold atoms is outlined. After a brief review of cooling techniques and Bose–Einstein condensation, the case of atomic clocks in microgravity is discussed. The scientific objectives of the European mission ACES are presented. ACES will fly onboard the international space station in 2005–2006.  相似文献   

6.
We demonstrate how to realize an optical clock with neutral atoms that is competitive to the currently best single ion optical clocks in accuracy and superior in stability. Using ultracold atoms in a Ca optical frequency standard, we show how to reduce the relative uncertainty to below 10(-15). We observed atom interferences for stabilization of the laser to the clock transition with a visibility of 0.36, which is 70% of the ultimate limit achievable with atoms at rest. A novel scheme was applied to detect these atom interferences with the prospect to reach the quantum projection noise limit at an exceptional low instability of 4 x 10(-17) in 1 s.  相似文献   

7.
In this paper we describe the cold atom clock PHARAO, designed for microgravity operation. All elements of the PHARAO engineering model have been manufactured and delivered to CNES, the French space agency. We present the clock design, its main characteristics, and initial science operation. PHARAO is one of the main components of the Atomic Clock Ensemble in Space payload that is scheduled to fly on board the International Space Station in 2010. PACS 07.87.+v; 06.30.Ft; 95.55.Sh; 32.80.Pj  相似文献   

8.
李琳  吉经纬  任伟  赵鑫  彭向凯  项静峰  吕德胜  刘亮 《中国物理 B》2016,25(7):73201-073201
When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic field by additional coils, whose current is changed accordingly to compensate the magnetic fluctuation by the linear and incremental compensation. The flight model of the cold atom clock is tested in a simulated orbital magnetic environment and the magnetic field fluctuation in the Ramsey cavity is reduced from 17 nT to 2 nT, which implied the uncertainty due to the second order Zeeman shift is reduced to be less than 2×10~(-16). In addition, utilizing the compensation, the magnetic field in the trapping zone can be suppressed from 7.5 μT to less than 0.3 μT to meet the magnetic field requirement of polarization gradients cooling of atoms.  相似文献   

9.
We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.  相似文献   

10.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

11.
We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S03P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional uncertainty of 2.6×10-15, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy [Phys. Rev. Lett. 98, 083002 (2007)].  相似文献   

12.
With microkelvin neutral strontium atoms confined in an optical lattice, we have achieved a fractional resolution of better than 5×10–15 on the 1 S 03 P 0 doubly forbidden 87Sr clock transition at 698 nm. Measurements of the clock line shifts as a function of experimental parameters indicate that the fractional uncertainties due to systematic shifts could be reduced below 10–15. The ultrahigh spectral resolution permitted resolving the nuclear spin states of the clock transition at small magnetic fields, leading to measurements of the 3 P 0 magnetic moment and metastable lifetime. In addition, photoassociation spectroscopy was performed on the narrow 1 S 03 P 1 transition of 88Sr, revealing the least-bound state, and showing promise for efficient optical tuning of the ground state scattering length and production of cold molecules.  相似文献   

13.
We report what we believe to be the first accuracy evaluation of an optical lattice clock based on the S01-->P03 transition of an alkaline earth boson, namely, Sr88 atoms. This transition has been enabled by using a static coupling magnetic field. The clock frequency is determined to be 429228066418009(32)Hz. The isotopic shift between Sr87 and Sr88 is 62188135Hz with fractional uncertainty 5x10(-7). We discuss the necessary conditions to reach a clock accuracy of 10(-17) or less by using this scheme.  相似文献   

14.
15.
Three-dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly 10(2) strontium atoms in the 1S0 state have been trapped with a lifetime of 80 ms. In order to design the electrodes, we numerically analyzed the electric field and simulated atomic trajectories in the trap, which showed reasonable agreement with the experiment.  相似文献   

16.
17.
An ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s(2) 1S0-->5s5p 3P0 transition of 87Sr atoms as a "clock transition." Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10(-17).  相似文献   

18.
We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the previous version.The experimental results show that the short term frequency stability of 5.4×10~(-13)τ~(-1/2) and 2.9× 10~(-15) at 1-day integrating time are achieved.  相似文献   

19.
A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while it is guided by a magnetic-field potential. We generate our multimode beam-splitter potential with two current-carrying wires upon a glass substrate combined with an external transverse bias field. The atoms are guided around curves and a beam-splitter region within a 10-cm guide length. We achieve a maximum integrated flux of 1.5x10(5)atoms/s with a current density of 5x10(4)amp/cm (2) in the 100-microm -diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio.  相似文献   

20.
Optical clock signal distribution has been widely discussed to be an attractive way to reduce the clock skew in high-speed digital systems. For short interconnect lengths, especially for chip level clock distribution, free space systems using diffractive optical elements (DOEs) have specific advantages. The optoelectronic pathway described in this paper consists of a GaAs laser diode, a microetched silicon mirror, a faceted diffractive element and four silicon photodiodes hybridized to a (dummy) silicon chip. The key element of the clock distribution demonstrator is the diffractive element which matches setup requirements like compactness, off-axis geometry and use of an unshaped laser beam. The whole setup meets the demands of alignment accuracy in an excellent way. This is achieved by the very good imaging characteristic of the DOE and by an alignment technique based on precision mounting of micromachined silicon components. The system was tested with clock rates up to 2.5 GHz, the cut-off frequency is 350 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号