首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perovskite type oxides have been intensively studied due to their interesting optical, electrical, and catalytic properties. Among perovskites the alkaline earth stannates stand out, being strontium stannates (SrSnO3) the most important material in ceramic technology among them due to their wide application as dielectric component. SrSnO3 has also been applied as stable capacitor and humidity sensor. In the present work, SrSnO3:Cu was synthesized by polymeric precursor method and heat treated at 700, 800, and 900 °C for 4 h. After that, the material was characterized by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, and UV–vis spectroscopy. Results indicated three thermal decomposition steps and confirmed the presence of strontium carbonate and Cu2+ reduction to Cu+ at higher dopant amounts. XRD patterns indicated that the perovskite crystallization started at 700 °C with strontiatite (SrCO3) and cassiterite (SnO2) as intermediate phases, disappearing at higher temperatures. The amount of secondary phase was reduced with the increase in the Cu concentration.  相似文献   

2.
A new copper propionate complex was synthesised and characterized for application as precursor for CuO based oxide thin films deposition. The FT-IR and X-ray diffraction analyses have revealed the formation of a cooper propionate complex [Cu(CH3CH2COO)2]·2H2O. The crystal and molecular structure of a new copper propionate complex was determined by XRD on the copper propionate single crystal. The copper propionate complex has a binuclear structure, connected by bridging bidentate carboxylates groups and a Cu?Cu bond of 2.6 Å. The thermal decomposition of copper propionate has been investigated by thermal analysis using thermogravimetric (TG) and differential thermal analysis (DTA), differential thermal analysis coupled with quadrupole mass spectrometry-QMS, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) techniques. TG and XRD data indicate the reduction of Cu(II)-Cu(I,0) during the decomposition of copper propionate.  相似文献   

3.
Ba[Zr0.25Ti0.75]O3 (BZT) thin films were synthesized by the complex polymerization method and heat treated at 400 °C for different times and at 700 °C for 2 h. These thin films were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission gun-scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM), Ultraviolet–visible (UV–vis) absorption spectroscopy, electrical and photoluminescence (PL) measurements. FEG-SEM and AFM micrographs showed that the microstructure and thickness of BZT thin films can be influenced by the processing times. Dielectric constant and dielectric loss of BZT thin films heat treated at 700 °C were approximately 148 and 0.08 at 1 MHz, respectively. UV–vis absorption spectra suggested the presence of intermediary energy levels (shallow and deep holes) within the band gap of BZT thin films. PL behavior was explained through the optical band gap values associated to the visible light emission components.  相似文献   

4.

Abstract  

The interactions of Cu(II), Zn(II), and Al(III) with 1,6-dimethyl-4-hydroxy-3-pyridinecarboxylic acid (DQ716) and 2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid (DT726), possible chelating agents in Alzheimer’s disease, were investigated in aqueous solution. The proton dissociation constants of the ligands, the stability constants, and the coordination modes of the metal complexes formed were determined by pH-potentiometric, UV–vis spectrophotometric, and 1H NMR methods. The nitrogen of the pyridine ring changes the proton affinity of the carboxylate and phenolate moieties and these pyridine derivatives form stronger complexes with Cu(II), Zn(II), and Al(III) than salicylic acid. Interactions of the ligands with human serum albumin as their potential transporter in blood were investigated at physiological pH through ultrafiltration by UV–vis and fluorescence spectroscopy.  相似文献   

5.
Single crystals of pure and cupric ion (Cu(II))-doped magnesium rubidium sulfate hexahydrate (MRSH) were prepared by slow evaporation of saturated solution technique (SEST) and the influence of dopant Cu(II) on the MRSH crystals has been investigated. Incorporation of Cu(II) into the crystalline matrix was confirmed by energy dispersive spectroscopy (EDS) and electron paramagnetic resonance (EPR) spectroscopy. Thermogravimetric (TG) analysis of the doped sample reveals the faster rate of degradation. EPR spectrum of the MRSH both at room temperature and at 77 K indicates the presence of Cu(II) in the interstitial position. The grown crystals were also characterized by UV–VIS and IR spectroscopy. The surface morphology of the doped sample studied by scanning electron microscopy (SEM) indicates different morphology at various magnifications. The non-linear optical (NLO) property measured using second harmonic generation (SHG) efficiency test reveals that the non-linearity is not facilitated by doping of Cu(II).  相似文献   

6.
Physico-chemical properties, spectroscopy, and thermal analyses were used aiming at evaluating the influence of toasting and of the flaxseed variety on thermo-oxidative behavior of flaxseed oils. Thermogravimetry (TG) and differential scanning calorimetry (DSC) were associated to gas chromatography, infrared spectroscopy and UV–Vis spectroscopy, as well as to physico-chemical analyses to characterize the oils obtained from raw and toasted flaxseeds. No meaningful differences in the thermal and oxidative stabilities were noticed comparing oils obtained from the brown and the golden flaxseeds. Nevertheless, the UV–Vis spectra indicated that both flaxseed oils were at the beginning of the oxidation process. The previous toasting of the seeds led to a higher oxidation for both varieties being harmful to the flaxseed oil quality.  相似文献   

7.

Abstract  

Acetone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H2AHNH) has been prepared and its structure confirmed by elemental analysis and 1H NMR spectroscopy. It has been used to produce diverse complexes with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and U(VI)O2 ions. The complexes obtained have been investigated by thermal analysis, spectral studies (1H NMR, IR, UV–visible, ESR), and magnetic measurements. IR spectra suggest that H2AHNH acts as a bidentate ligand. The electronic spectra of the complexes and their magnetic moments provide information about geometries. The ESR spectra give evidence for the proposed structure and the bonding for some Cu(II) complexes. Thermal decomposition of the Ni(II) and Cu(II) complexes afforded metal oxides as final products. Kinetic data were obtained for each stage of thermal degradation of some of the complexes using the Coats–Redfern method. The formation of complexes in solution was studied pH-metrically and the order of their stability constants (log K) was found to be U(VI)O2 > Cu(II) > Zn(II) > Ni(II) > Cd(II) > Co(II). Antimicrobial and eukaryotic DNA studies were carried out.  相似文献   

8.
The production of new biocidal polyester Schiff base metal complexes [PESB–M(II)] via polycondensation reaction between chelated Schiff base diol and adipoyl chloride is reported. The resulting polyesters were characterized by physico-chemical and spectroscopic methods. The analytical data of all the synthesized polyesters were found to be in good agreement with 1:1 molar ratio of chelated Schiff base diol to adipoyl chloride. Thermogravimetric analyses of synthesized polyesters were studied by TG in nitrogen atmosphere up to 1073 K and results indicate that Cu(II) polyester complex exhibited better heat resistant properties than the other polyesters complexes. Magnetic moment and UV–visible spectra were examined to explain the structure of all the polyesters which reveled that Mn(II), Co(II), Ni(II) have octahedral geometry while Cu(II) possess a distorted octahedral geometry. These newly developed polyesters were also tested for their antibacterial activity against several bacteria and fungi. Among all the tested compounds PESB–Cu(II) possess the highest bactericidal and fungicidal activity.  相似文献   

9.
Abstract  Acetone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H2AHNH) has been prepared and its structure confirmed by elemental analysis and 1H NMR spectroscopy. It has been used to produce diverse complexes with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and U(VI)O2 ions. The complexes obtained have been investigated by thermal analysis, spectral studies (1H NMR, IR, UV–visible, ESR), and magnetic measurements. IR spectra suggest that H2AHNH acts as a bidentate ligand. The electronic spectra of the complexes and their magnetic moments provide information about geometries. The ESR spectra give evidence for the proposed structure and the bonding for some Cu(II) complexes. Thermal decomposition of the Ni(II) and Cu(II) complexes afforded metal oxides as final products. Kinetic data were obtained for each stage of thermal degradation of some of the complexes using the Coats–Redfern method. The formation of complexes in solution was studied pH-metrically and the order of their stability constants (log K) was found to be U(VI)O2 > Cu(II) > Zn(II) > Ni(II) > Cd(II) > Co(II). Antimicrobial and eukaryotic DNA studies were carried out. Graphical abstract     相似文献   

10.
This work concerns the study of Al–Ni bimetallic nanoparticles synthesized by gamma-radiolysis of aqueous solution containing aluminium chloride hexahydrate, nickel chloride hexahydrate, polyvinyl alcohol for capping colloidal nanoparticles, and isopropanol as radical scavenger. While the Al/Ni molar ratio is kept constant, size of the nanoparticles can be well controlled by varying the radiation dose. The products were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). Observations of UV–vis absorption spectra and TEM images showed that as the radiation dose increases from 50 to 100 kGy the particle size decreases and the number particles distribution increases. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. The EDX and XRD analysis confirmed directly the formation of Al–Ni bimetallic nanoparticles in form of alloy nanoparticles.  相似文献   

11.
We demonstrate the synthesis of copper selenide quantum dots (QDs) by element directed, inexpensive, straight forward wet chemical method which is free from any surfactant or template. Copper selenide QDs have been synthesized by elemental copper and selenium in the presence of ethylene glycol, hydrazine hydrate, and a defined amount of water at 70 °C within 8 h. The product is in strong quantum confinement regime, phase analysis, purity and morphology of the product has been well studied by X-ray diffraction (XRD), UV–Visible spectroscopy (UV–Vis), Photo-luminescent spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), High resolution transmission electron microscopy (HRTEM), and by Atomic force microscopy (AFM) techniques. The absorption and photoluminescence studies display large “blue shift”. TEM and HRTEM analyses revealed that the QDs diameters are in the range 2–5 nm. Due to the quantum confinement effect copper selenide QDs could be potential building blocks to construct functional devices and solar cell. The possible mechanism is also discussed.  相似文献   

12.
Transparent nanocrystalline zirconia thin films were prepared by sol–gel dip coating technique using Zirconium oxychloride octahydrate as source material on quartz substrates, keeping the sol at room temperature (SET I) and 60 °C (SET II). X-ray diffraction (XRD) pattern shows the formation of mixed phase [tetragonal (T) + monoclinic (M)] in SET I and a pure tetragonal phase in SET II ZrO2 thin films annealed at 400 °C. Phase transformation from tetragonal to monoclinic was achieved in SET II film annealed at 500 °C. Atomic force microscopy analysis reveals lower rms roughness and skewness in SET II film annealed at 500 °C indicating better optical quality. The transmittance spectra gives a higher average transmittance >85% (UV–VIS region) in SET II films. Optical spectra indicate that the ZrO2 films contain direct—band transitions. The sub- band in the monoclinic ZrO2 films introduced interstitial Odefect states above the top of the valance band. The energy bandgap increased (5.57–5.74 eV) in SET I films and decreased (5.74–5.62 eV) in SET II films, with annealing temperature. This is associated with the variations in grain sizes. Photoluminescence (PL) spectra give intense band at 384 and 396 nm in SET I and SET II films, respectively. A twofold increase in the PL intensity is observed in SET II film. The “Red” shift of SET I films and “Blue” shift of SET II films with annealing temperature, originates from the change of stress of the film due to lattice distortions.  相似文献   

13.
Ce doped ZnO nanoparticles (Zn1−xCexO, x = 0.0, 0.05 and 0.1) have been synthesized by sol–gel method at annealing temperature of 500 °C for 1 h under Ar atmosphere. The synthesized samples have been characterized by powder X-ray diffraction (XRD), energy dispersive X-ray studies, UV–Visible spectrophotometer and fourier transform infrared (FTIR) spectroscopy. The XRD measurements indicate that the prepared nanoparticles have a hexagonal wurtzite structure and CeO2 crystallites. The calculated average crystalline varied from 21.97 to 15.62 nm with increase in Ce concentrations. The increase in lattice parameters reveals the substitution of Ce into ZnO lattice. The presence of functional groups and the chemical bonding is confirmed by FTIR spectra. PL spectra of the Zn1−xCexO system show that the shift in near band edge emission from 386 to 363 nm and a shift in blue band emission from 517 to 485 nm which confirms the substitution of Ce into the ZnO lattice.  相似文献   

14.
Anionic surfactant and silane modified layered double hydroxides (LDHs) were synthesized through an in situ coprecipitation method. The structure and morphology were characterized by XRD and TEM techniques, and their thermal decomposition processes were investigated using infrared emission spectroscopy (IES) combined with thermogravimetry (TG). The surfactant modified LDHs (H-DS) shows three diffractions located at 1–7° (2θ), while there is only one broad reflection for silane grafted LDHs (H–Si) in this region. The morphologies of the H-DS and H–Si show fibrous exfoliated layers and curved sheets, respectively. The IES spectra and TG curves indicate that alkyl chain combustion and dehydroxylation are overlapped with each other during heating from 373 to 723 K in H-DS and to 873 K in H–Si. Sulfate anion transformation process occurs at 473 K in H-DS and 523 K in H–Si. The derivant of sulfate can exist even above 1073 K. After further decomposition, the metal oxides and the new type of Si–O compounds are formed beginning at around 923 K in silane modified sample.  相似文献   

15.
Nanocrystalline cubic fluorite/bixbyite CeO2 or α–Mn2O3 has been successfully synthesized by using methanol as a solvent via sol–gel method calcined at 400 °C. The obtained products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV–vis absorption and Photoluminescence (PL) spectroscopy. TEM reveals that the as-synthesized ultra-fine samples consist of elliptical/spherical and sheet-like morphology of crystalline particles of 8/30 nm, which are weakly aggregated. Optical absorbance spectra reveal that the absorption of ceria in the UV region originates from the charge- transfer transition between the O2− (2p) and Ce4+ (4f) orbit in CeO2. However, α–Mn2O3 nanostructures with nearly pure band gap emission should be of importance for their applications as UV emitters.  相似文献   

16.
Copper oxide nanoparticles were successfully synthesized through a simple and ‘green’ route using starch as a capping and stabilizing agent under ultrasonic irradiation in alkaline medium. Unique reaction condition was prepared by ultrasonic irradiation, releasing the stored energy in the collapsed bubbles and heats the bubble contents that leads to Cu(II) reduction in the presence of starch. The obtained nanoparticle (CuO NPs@Starch) was characterized by advanced physical and chemical techniques like Transmission Electron Microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), Uv–Vis spectroscopy, scanning electron microscopy (SEM), X-ray Diffraction (XRD) and energy-dispersive X-ray analysis (EDX). The properties of CuO NPs@Starch against gastric cancer (AGS and KATO III), pancreatic cancer (AsPC-1 and MIA PaCa-2), and colon cancer (HCT 116 and HCT-8) were evaluated. The viability of malignant cancer cell lines reduced dose-dependently in the presence of CuO NPs@Starch. After clinical study, CuO NPs@Starch can be utilized as an efficient drug in the treatment of gastric, pancreatic, and colon cancers in humans.  相似文献   

17.
New complexes of 2-benzoyl-pyridil-isonicotinoylhydrazone (L) with Cu(II), Co(II), Ni(II) and Mn(II), having formula of type [ML2] SO4·xH2O (M = Cu2+, Co2+, Ni2+, x = 2 and M = Mn2+, x = 3), have been synthesised and characterised. All complexes were characterised on the basis of elemental analyses, IR spectroscopy, UV–VIS–NIR, EPR, as well as thermal analysis and determination of molar conductivity and magnetic moments. The thermal behaviour of complexes was studied using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The structure of L hydrazone was established by X-ray study on single crystal. The ligand works as tridentate NNO, being coordinated through the azomethine nitrogen, the pyridine nitrogen and carbonylic oxygen. Heats of decomposition, ΔH, associated with the exothermal effects were also determined.  相似文献   

18.
N, B, Si-tridoped mesoporous TiO2, together with N-doped, N, B-codoped and N, Si-codoped TiO2, was prepared by a modified sol–gel method. The samples were characterized by wide-angle X-ray diffraction (WAXRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV–visible adsorbance spectra (UV–vis) and X-ray photoelectron spectra (XPS). The N, B, Si-tridoped mesoporous TiO2 showed small crystallite size, large specific surface area (350 m2/g), uniform pore distribution (3.2 nm) and strong absorption in the visible light region. The photocatalytic activities of the samples were evaluated by the photodegradation of 2,4-dichlorophenol (2,4-DCP) aqueous solution. The N, B, Si-tridoping sample exhibited much higher photocatalytic activity compared with other synthesized photocatalysts. The high activity could be attributed to the strong absorption in the visible light region, large specific surface area, small crystallite size, large amount of surface hydroxyl groups, and mesoporosity.  相似文献   

19.
Several mononuclear Co(II), Ni(II), Cu(II), and Fe(II) complexes of tetradentate salpren-type diimine, obtained from 3,5-di-tert-butyl-2-hydroxybenzaldehyde and 1,3-diaminopropane have been prepared and characterized by analytical, spectroscopic (FT-IR, UV–VIS) techniques, magnetic susceptibility measurements and thermogravimetric analyses (TG). The thermodynamic and thermal properties of complexes have been investigated. For further characterization Direct Insertion Probe-Mass Spectrometry (DIP-MS) was used and the fragmentation pattern and also stability of the ions were evaluated. The characterization of the end products of the decomposition was achieved by X-ray diffraction. The thermal stabilities of metal complexes of N,N′-bis(3,5-di-t-butylsalicylidene)-1,3-propanediamine ligand (L) were found as Ni(II) > Cu(II) > Co(II) > Fe(II).  相似文献   

20.
Polymeric copper(II), [Cu(μ-dpc)(μ-4-hymp)] n (1), and monomeric nickel(II), [Ni(dpc)(4-hymp)(H2O)2]·H2O (2), (dpc: dipicolinate, 4-hymp: 4-hydroxymethyl pyridine), dipicolinate complexes have been prepared and characterized by spectroscopic (IR, UV–Vis, EPR), thermal (TG/DTA), X-ray diffraction technique and electrochemical methods. In both the dipicolinate complexes, the dpc dianion acts as a tridentate ligand. In polymeric copper(II) complex, the 4-hymp and dpc ligands adopt a bridging position between the Cu(II) centers, forming the elongated octahedral geometry. The polymeric chains are linked to one another via O–H···O hydrogen bond interactions, forming the 3-D polymeric structure. The Ni(II) ion is bonded to dpc ligand through pyridine N atom together with one O atom of each carboxylate group, two aqua ligands and N pyridine atom of 4-hymp, forming the distorted octahedral geometry. The Ni(II) complexes are connected to one another via O–H···O hydrogen bonds, forming R 42(18) motifs in 2-D pattern. The powder EPR spectra of copper(II) complex have indicated that the paramagnetic center is in rhombic symmetry with the Cu2+ ion having distorted octahedral geometry. IR and UV–Vis spectroscopes all agree with the observed crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号