首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
77Se-enriched CpNi(bds) (bds = 1,2-benzenediselenolate), has been synthesized and its g tensor and 77Se hyperfine tensors have been obtained from its frozen solution electron paramagnetic resonance (EPR) spectrum. These parameters are consistent with those calculated by density functional theory (DFT); it is shown that 10% of the spin is localized on each selenium and that the direction associated to the maximum 77Se couplings is aligned along the gmin direction, perpendicular to the Ni(bds) plane. EPR measurements and DFT calculations are also carried out on the 77Se enriched complex CpNi(dsit) as well on the two dithiolene analogues CpNi(bdt) and CpNi(dmit). The optimized structures of the isolated CpNi(bds) and CpNi(bdt) complexes have been used to generate the idealized dimers (bds)NiCp...CpNi(bds) and (bdt)NiCp...CpNi(bdt) characterized by Cp...Cp overlap. The exchange parameters J calculated at the DFT level for these systems are in reasonable accord with the experimental values. The influence of the geometry of the dimer on its magnetic properties is assessed by calculating the variation of J as a function of the relative orientation of the two Ni(diselenolene) or Ni(dithiolene) planes.  相似文献   

2.
Four new complexes of the general formula [Ni(SS)(NN)], Where SSis dddt (5,6-dihydro-1,4-dithiin-2,3-dithiolate) or pddt(6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate) and NNis bpy or phen were prepared. The UV/Vis.Spectra exhibit intense intramolecular ligand-to-ligand charge transfer bands ca.600 nm.Cyclic voltammetry shows a reversible oxidation step assigned to [Ni(SS)(NN)]0=[Ni(SS)(NN)]+. When the complex [Ni(dddt)(bpy)] was partially oxidized by I2, a broad ESRsignal at g=2.003 appeared.  相似文献   

3.
The formally Ni(III) d7 radical organometallic complexes formulated as [CpNi(dithiolene)] can be prepared by different routes involving different CpNi sources such as the Ni(I) [CpNi(CO)]2, the Ni(II) [Cp2Ni] or [CpNi(cod)]+ or the Ni(III) [Cp2Ni]+ complexes. As dithiolene precursors, the naked dithiolate, the mono- as well as bis-(dithiolene) metal complexes were investigated. The highest yields are generally associated with an appropriate redox match, that is a CpNi(II) precursor with a formally Ni(IV) [Ni(dithiolene)2]0 complex, or a CpNi(III) precursor with a formally Ni(III) [Ni(dithiolene)2]? complex. The structural, electrochemical and spectroscopic (UV–vis–NIR, EPR) properties of more than twenty complexes are described and compared, with the help of DFT calculations. They all exhibit a small optical gap with a low-energy absorption band in the Near Infra-Red region, between 700 and 1000 nm. The smaller electrochemical and optical gap found in the [CpNi(dmit)] and [CpNi(dddt)] complexes is correlated with an extensive delocalisation of the spin density in these complexes, while the other members of the series are characterized with a larger and sizeable spin density on the cyclopentadienyl ring.  相似文献   

4.
Reaction of UCl4 with 3 or 4 mol equiv of Na2dddt (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) in THF afforded the first example of a tetrakis(dithiolene) metal compound, [Na4(THF)8U(dddt)4](infinity) (1). The red crystals of 1 are composed of infinite zigzag chains in which Na2(micro-THF)3 fragments ensure the linking of Na2(THF)5U(dddt)4 moieties; the uranium atom is in a dodecahedral environment of eight sulfur atoms. Treatment of UCl4 with 3 mol equiv of Na2dddt in pyridine gave a mixture of tris- and tetrakis(dithiolene) compounds. After addition of 18c6 (18-crown-6), only the tris(dithiolene) complex was obtained and crystallized as orange crystals of [Na(18c6)(py)2]2[U(dddt)3].2py (2.2py) in which the isolated [U(dddt)3]2- anion adopts a slightly distorted trigonal prismatic configuration. A few red crystals of the unsolvated complex 2 and the trinuclear anionic compound [Na(18c6)(py)2]3[Na{U(dddt)3}2] (3) were also obtained along with orange crystals of 2.2py. All the tris(dithiolene) compounds exhibit large folding of the dddt ligand and significant interaction between the C=C double bond and the metal center.  相似文献   

5.
The heteroleptic neutral radical dithiolene complexes CpNi(dmit)., CpNi(dsit). and CpNi(dmid).(dmit=1,3-dithiole-2-thione-4,5-dithiolate; dsit=1,3-dithiole-2-thione-4,5-diselenolate; dmid=1,3-dithiole-2-one-4,5-dithiolate) are obtained from the reaction of (Cp2Ni)BF4 with either (n-Bu4N)[Ni(dmit)2] and (n-Bu4N)[Ni(dmid)2] or PhSb(dmit) and PhSb(dsit), respectively. The three complexes reduce reversibly to the corresponding Ni(II) anions and oxidize reversibly to the cationic state. As deduced from DFT calculations performed on CpNi(dmit)., the SOMO of these complexes is essentially localized on the dithiolene moiety with little metal contribution. CpNi(dsit). is isostructural with CpNi(dmit). and crystallizes in the monoclinic system, space group P2(1). In the solid-state structures of both CpNi(dmit). and CpNi(dsit)., molecules interact through a three-dimensional set of intermolecular interactions mediated by short SS, SeSe and SSe contacts, as confirmed from the temperature and field dependence of the magnetic susceptibility by the observation of an antiferromagnetic ground state below T(Neel)=27 K in CpNi(dmit)., 18 K in CpNi(dsit).. Finally, CpNi(dmid). crystallizes in the orthorhombic system, space group Pnma. Molecules organize into uniform chains through the stacking of the dmid moieties in a sigma-type face-to-face overlap.  相似文献   

6.
The redox‐active and chelating diphosphine, 3,4‐dimethyl‐3′,4′‐bis(diphenylphosphino)‐tetrathiafulvalene, denoted as P2 , is engaged in a series of platinum complexes, [(P2)Pt(dithiolene)], with different dithiolate ligands, such as 1,2‐benzenedithiolate (bdt), 1,3‐dithiole‐2‐thione‐4,5‐dithiolate (dmit), and 5,6‐dihydro‐1,4‐dithiin‐2,3‐dithiolate (dddt). The complexes are structurally characterized by X‐ray diffraction, together with a model compound derived from bis(diphenylphosphino)ethane, namely, [(dppe)Pt(dddt)] . Four successive reversible electron‐transfer processes are found for the [(P2)Pt(dddt)] complex, associated with the two covalently linked but electronically uncoupled electrophores, that is, the TTF core and the platinum dithiolene moiety. The assignments of the different redox processes to either one or the other electrophore is made thanks to the electrochemical properties of the model compound [(dppe)Pt(dddt)] lacking the TTF redox core, and with the help of theoretical calculations (DFT) to understand the nature and energy of the frontier orbitals of the [(P2)Pt(dithiolene)] complexes in their different oxidation states. The first oxidation of the highly electron‐rich [(P2)Pt(dddt)] complex can be unambiguously assigned to the redox process affecting the Pt(dddt) moiety rather than the TTF core, a rare example in the coordination chemistry of tetrathiafulvalenes acting as ligands.  相似文献   

7.
Abstract  The novel [Ni(Me2pipdt)(dddt)] complex based on the Me2pipdt (1,4-dimethylpiperazine-3,2-dithione) and dddt (5,6-dihydro-1,4-dithine-2,3-dithiolate) ligands has been synthesised and characterised. Structural data, vibrational marker, solvatochromic behaviour of the typical absorption in the near infrared region, and approximate theoretical calculations suggest that an unbalanced electron distribution at the dithiolene core occurs in the ground and excited states. In particular, the dddt ligand gives a prevailing contribution to the HOMO, and Me2pipdt to the LUMO. The charge-transfer character of the HOMO–LUMO transition makes this complex a potential second-order non-linear optic chromophore. Graphical Abstract     相似文献   

8.
Two new compounds containing the possible Fe(III) spin-crossover cation, [Fe(qsal)2]+ (qsalH = N-(8-quinolyl)salicylaldimine), and nickel bis(dithiolene) anions have been synthesized. Both are 1 : 1 salts [Fe(qsal)2][Ni(dddt)2] · CH3CN · CH3OH (1) and [Fe(qsal)2][Ni(pddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate; pddt = 6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate). They have been characterized by X-ray crystal structure determination, elemental analysis, UV-Vis spectra and magnetic susceptibility measurements. The UV–Vis spectra are dominated by [Ni(L)2]? (1, L = dddt; 2, L = pddt). Magnetic studies show antiferromagnetic interaction in 1 from intermolecular S···S contacts and π–π stacking interactions, while the antiferromagnetic interaction in 2 is very weak.  相似文献   

9.
The synthesis, structure and properties of molecular conductors based on M(dddt)2 cation complexes (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) which are metal complex analogs of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET) salts are considered. Formally, the central C=C bond of ET is substituted by a metal ion in the M(dddt)2 complexes. The effect of metal (M=Ni, Pt, Pd) and counterion on crystal structure and conducting properties of M(dddt)2 complexes is analyzed. The similarity and distinction in structures and properties of M(dddt)2 and ET salts are discussed.  相似文献   

10.

Abstract  

The novel [Ni(Me2pipdt)(dddt)] complex based on the Me2pipdt (1,4-dimethylpiperazine-3,2-dithione) and dddt (5,6-dihydro-1,4-dithine-2,3-dithiolate) ligands has been synthesised and characterised. Structural data, vibrational marker, solvatochromic behaviour of the typical absorption in the near infrared region, and approximate theoretical calculations suggest that an unbalanced electron distribution at the dithiolene core occurs in the ground and excited states. In particular, the dddt ligand gives a prevailing contribution to the HOMO, and Me2pipdt to the LUMO. The charge-transfer character of the HOMO–LUMO transition makes this complex a potential second-order non-linear optic chromophore.  相似文献   

11.
Eight new sulfur-rich [CpCo(dithiolene)] complexes were synthesized from [Zn(dmit)2]2− as a starting material. The structures, electrochemical behavior and electronic absorption spectra of the sulfur-rich [CpCo(S2C2S2Y)] complexes could be compared with the early data of analogous Ni complexes. [CpCo(pddt)] (Y = -(CH2)3-), [CpCo(dpdt)] (Y = -CH2C(CH2)CH2-), [CpCo(bddt)] (Y = -(CH2)4-), [CpCo(dtdt)] (Y = -CH2SCH2-) and [CpCo(poddt)] (Y = -CH2C(O)CH2-) crystallized in all isostructural with the corresponding paramagnetic [CpNi(dithiolene)] complexes, but [CpCo(dmid)] (Y = CO), [CpCo(dddt)] (Y = -(CH2)2-) and [CpCo(F2pddt)] (Y = -CH2CF2CH2-) crystallized in non-isostructural with them. These molecules are associated with intermolecular short S?S contacts in the crystals. [CpCo(F2pddt)] did not show any remarkable S?S contacts but indicated interesting fluorine segregation and Cp?Cp face-to-face interactions. Redox potentials of [CpCo(dithiolene)] complexes were obtained with the cyclic voltammetry measurements and dimerized by electrochemical oxidations. Electronic absorption spectra of [CpCo(dithiolene)] complexes showed visible absorption in the range of 585-701 nm as lowest energy wavelengths (? = 9800-11,800 M−1 cm−1) in solutions, and they were higher energy than those of [CpNi(dithiolene)] complexes (near-IR).  相似文献   

12.
New precursors to potentially conductive noninteger oxidation state (NIOS) compounds based on metal complexes [ML(2)](n)()(-) [M = Ni, Pd, Pt; L = 5,6-dihydro-1,4-dithiin-2,3-dithiolato (dddt(2)(-)), 5,7-dihydro-1,4,6-trithiin-2,3-dithiolato (dtdt(2)(-)), and 2-thioxo-1,3-dithiole-4,5-dithiolato (dmit(2)(-)); n = 2, 1, 0] have been investigated. Complexes of the series (NR(4))[ML(2)] (R = Me, Et, Bu; L = dddt(2)(-), dtdt(2)(-)) have been isolated and characterized, and the crystal structure of (NBu(4))[Pt(dtdt)(2)] (1) has been determined {1 = C(24)H(44)NPtS(10), a = 12.064(2) ?, b = 17.201(3) ?, c = 16.878(2) ?, beta = 102.22(2) degrees, V = 3423(1) ?(3), monoclinic, P2(1)/n, Z = 4}. Oxidation of these complexes affords the corresponding neutral species [ML(2)](0). Another series of general formula (cation)(n)()[M(dmit)(2)] [cation = PPN(+), BTP(+), and (SMe(y)()Et(3)(-)(y)())(+) with y = 0, 1, 2, and 3, n = 2, 1, M = Ni, Pd] has also been studied. All of these (cation)(n)()[M(dmit)(2)] complexes have been isolated and characterized [with the exception of (cation)[Pd(dmit)(2)] for cation = (SMe(y)()Et(3)(-)(y)())(+)]. The crystal structures of (PPN)[Ni(dmit)(2)].(CH(3))(2)CO (2) and (SMeEt(2))[Ni(dmit)(2)] (3) have been determined {2 = C(45)H(36)NNiS(10)P(2)O, a = 12.310(2) ?, b = 13.328(3) ?, c = 15.850(3) ?, alpha = 108.19(3) degrees, beta = 96.64(2) degrees, gamma = 99.67(2) degrees, V = 2373(1) ?(3), triclinic, P&onemacr;, Z = 2; 3 = C(11)H(13)NiS(11), a = 7.171(9) ?, b = 17.802(3) ?, c = 16.251(3) ?, beta = 94.39(4) degrees, V = 2068(2) ?(3), monoclinic, P2(1)/n, Z = 4} NIOS salts derived from the preceding precursors were obtained by electrochemical oxidation. Electrochemical studies of the [M(dddt)(2)] complexes show that they may be used for the preparation of NIOS radical cation salts and [M(dddt)(2)][M'(dmit)(2)](x)() compounds, but not for the preparation of (cation)[M(dddt)(2)](z)() NIOS radical anion salts. The electrochemical oxidation of the [M(dtdt)(2)](-) complexes always yields the neutral [M(dtdt)(2)](0) species. The crystal structure of [Pt(dddt)(2)][Ni(dmit)(2)](2) (4) has been determined and is consistent with the low compaction powder conductivity (5 x 10(-)(5) S cm(-)(1) at room temperature) {4 = C(20)H(8)Ni(2)PtS(28), a = 20.336(4) ?, b = 7.189(2) ?, c = 14.181(2) ?, beta = 97.16(2) degrees, V = 2057(1) ?(3), monoclinic, C2/m, Z = 2}. The crystal structures of the semiconducting NIOS compounds (BTP)[Ni(dmit)(2)](3) (5) and (SMe(3))[Ni(dmit)(2)](2) (6) have been determined {5 = C(43)H(22)PNi(3)S(30), a = 11.927(2) ?, b = 24.919(2) ?, c = 11.829(3) ?, alpha = 93.11(1) degrees, beta = 110.22(1) degrees, gamma = 83.94(1) degrees, V = 3284(1) ?(3), triclinic, P&onemacr;, Z = 2; 6 = C(15)H(9)Ni(2)S(21), a = 7.882(1) ?, b = 11.603(2) ?, c = 17.731(2) ?, alpha = 77.44(1) degrees, beta = 94.39(1) degrees, gamma = 81.27(1) degrees, V = 1563(1) ?(3), triclinic, P&onemacr;, Z = 2}. The parent compound (SEt(3))[Ni(dmit)(2)](z) (unknown stoichiometry) is also a semiconductor with a single-crystal conductivity at room temperature of 10 S cm(-)(1). By contrast, the single-crystal conductivity at room temperature of (SMeEt(2))[Pd(dmit)(2)](2) (7) is rather high (100 S cm(-)(1)). 7 behaves as a pseudometal down to 150 K and undergoes an irreversible metal-insulator transition below this temperature. The crystal structure of 7 has been determined {7 = C(17)H(13)NPd(2)S(21), a = 7.804(4) ?, b = 36.171(18) ?, c = 6.284(2) ?, alpha = 91.68(4) degrees, beta = 112.08(4) degrees, gamma = 88.79(5) degrees, V = 1643(1) ?(3), triclinic, P&onemacr;, Z = 2}. The electronic structure of (SMeEt(2))[Pd(dmit)(2)](2) (7) and the possible origin of the metal-insulator transition at 150 K are discussed on the basis of tight-binding band structure calculations.  相似文献   

13.
Reactions of Ln(BH4)3(THF)3 (Ln = Nd, Ce) and M2dddt (M = Na, K; dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) in THF or pyridine gave, after addition of 18c6 (18-crown-6), several crystalline compounds which all contain the tris(dithiolene) Ln(dddt)3 unit. Crystals of [Na(18c6)(py)2]2[Na(18c6)(py)][Nd(dddt)3(py)].3py (1.3py) are built up from discrete mononuclear cationic and anionic species whereas crystals of {[Na(18c6)(py)2](0.5)[Na(18c6)(py)(1.5)][Na(1.5)Nd(dddt)3]}(infinity) (2) are composed of discrete [Na(18c6)(py)x]+ cations and polymeric anionic two-dimensional layers in which the Nd(dddt)3 units are linked to three neighbors by sodium atoms to form a honeycomb network. Analysis of the temperature dependence of the molar magnetic susceptibility of 2 shows that chiMT decreases from 1.63 cm3 K mol(-1) at 300 K down to 0.6 cm3 K mol(-1) at 5 K, due to the crystal-field splitting of the (4)I(9/2) free-ion state. Complexes {[Na3(18c6)(1.5)Nd(dddt)3(THF)].3THF}(infinity) (3.3THF) and {[K3(18c6)(1.5)Nd(dddt)3(py)].3py}(infinity) (4.3py) exhibit neutral polymeric layers with the Nd(dddt)3 units linked by M2(18c6) fragments. In the cerium compound {[Na2(18c6)Na(py)2Ce(dddt)3(py)].3py}(infinity) (5.3py), each Ce(dddt)3 unit is linked to two neighbors only by Na2(18c6) moieties, giving infinite zigzag chains.  相似文献   

14.
The magnetic properties of a series of three neutral radical organometallic complexes of general formula [CpNi(dithiolene)]. have been investigated by a combination of X-ray crystal structure analysis and magnetic susceptibility measurements, while the assignment of the exchange coupling constants to the possible exchange pathways has been accomplished with the help of calculations based on density functional theory (DFT). The syntheses and X-ray structures of [CpNi(adt)] (adt=acrylonitrile-2,3-dithiolate) and [CpNi(tfd)] (tfd=1,2-bis(trifluoromethyl)ethene-1,2-dithiolate) complexes are described, while [CpNi(mnt)] (mnt=maleonitriledithiolate) was reported earlier. In the three complexes, we observed strong antiferromagnetic coupling that could not be explained solely by short SS intermolecular contacts. Our calculations indicated that spin density in these complexes is strongly delocalized on the NiS2 moiety, with up to 20% on the Cp ring. As a consequence, CpCp and Cpdithiolene overlap interactions have been identified as responsible for antiferromagnetic couplings. The [CpNi(adt)] complex thus has a value J=-369.5 cm(-1) for an exchange interaction through a pi stacking due to the CpCp overlap.  相似文献   

15.
Summary Complexes of the general formula [Pt(SS) (NN)], where SS is dddt (5,6-dihydro-1,4-dithiin-2,3-dithiolate) or pddt (6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate) and NN is bipy (2,2-bipyridine) or phen (1,10-phenanthroline), were prepared by the reaction of [PtCl2(NN)] with dithiolate ligands. The1H-n.m.r. spectra shows upfield shifts in the bipy or phen signals upon substitution of the chlorides in [PtCl2(bipy)] or [PtCl2(phen)] by dddt or pddt. The u.v.-vis. spectra exhibits intense intramolecular ligand-to-ligand charge transfer bands ca. 600 nm. Cyclic voltammograms show a reversible oxidation step, assigned to [Pt(SS) (NN)]0/[Pt(SS)(NN)]+. When the complexes were partially oxidized by I2, two broad e.s.r. signals atg = 1.91,g = 2.02 appeared. Raman spectra show the presence of I 3 and I5/– in the iodine-doped complexes. The electrical conductivities of the neutral mixed ligand complexes (10–9-10–10S cm–1) are raised to 10–7–10–8S cm–1 by I2 doping.  相似文献   

16.
The isostructural diamagnetic [CpCo(bdtodt)] and paramagnetic [CpNi(bdtodt)] (Cp = η5-cyclopentadienyl, bdtodt:benzo[1,3]dithiol-2-one-5,6-dithiolato) complexes were prepared by starting from the corresponding bis(dithiocarbonate): benzo[1,2-d;4,5-d′]bis[1,3]dithiole-2,6-dione. Both Co and Ni complexes are isostructural and crystallize in the orthorhombic system, space group Pbca. The formally MIII (16-electron for CoIII and 17-electron NiIII) complexes were investigated by X-ray structure analyses and exhibit the same two-legged piano-stool geometry. The CV of the radical [CpNi(bdtodt)] resulted in well-defined reversible reduction and oxidation waves. On the other hand, oxidation of [CpCo(bdtodt)] leads to dimerization in CH2Cl2 or reaction in the more coordinating CH3CN solvent. The absorption maximum (λmax) of [CpNi(bdtodt)] (741 nm) showed a more red shift compared with [CpCo(bdtodt)] (595 nm) in dichloromethane solution. The structural similarities, and electrochemical, spectroscopic and magnetic differences between various [CpCo(dithiolene)] and [CpNi(dithiolene)] complexes are further analyzed.  相似文献   

17.
Palladium and platinum complexes with HmtpO (where HmtpO=4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine, an analogue of the natural occurring nucleobase hypoxanthine) of the types [M(dmba)(PPh3)(HmtpO)]ClO4[dmba=N,C-chelating 2-(dimethylaminomethyl)phenyl; M=Pd or Pt], [Pd(N-N)(C6F5)(HmtpO)]ClO4[N-N=2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or N, N, N', N'-tetramethylethylenediamine (tmeda)] and cis-[M(C6F5)2(HmtpO)2] (M=Pd or Pt) (head-to-head atropisomer in the solid state) have been obtained. Pd(II) and Pt(II) complexes with the anion of HmtpO of the types [Pd(tmeda)(C6F5)(mtpO)], [Pd(dmba)(micro-mtpO)] 2, and [NBu4]2[M(C6F5)2(micro-mtpO)]2(M=Pd or Pt) have been prepared starting from the corresponding hydroxometal complexes. Complexes containing simultaneously both the neutral HmtpO ligand and the anionic mtpO of the type [NBu4][M(C6F5)2(HmtpO)(mtpO)] (M=Pd or Pt) have been also obtained. In these mtpO-HmtpO metal complexes, for the first time, prototropic exchange is observed between the two heterocyclic ligands. The crystal structures of [Pd(dmba)(PPh 3)(HmtpO)]+, cis-[Pt(C6F5)2(HmtpO)2].acetone, [Pd(C6F5)(tmeda)(mtpO)].2H2O, [Pd(dmba)(micro-mtpO)]2, [NBu4]2[Pd(C6F5)2(micro-mtpO)]2.CH2Cl2.toluene, [NBu4]2[Pt(C6F5)2(micro-mtpO)](2).0.5(toluene), and [NBu4][Pt(C6F5)2(mtpO)(HmtpO)] have been established by X-ray diffraction. Values of IC50 were calculated for the new platinum complexes cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR), lung (NCI-H460), and breast cancers (T47D). At 48 h incubation time, both complexes were about 8-fold more active than cisplatin in T47D and show very low resistance factors against an A2780 cell line, which has acquired resistance to cisplatin. The DNA adduct formation of cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by these platinum complexes on plasmid DNA pB R322 were also obtained.  相似文献   

18.
A comparative investigation on five different Cp2Ti(diselenolene) complexes, i.e. Cp2Ti(Se2C2Z2) (Z = -CO2Me), Cp2Ti[Se2C2Z(CF3)], Cp2Ti(bds) (bds = 1,2-benzene-diselenato), Cp2Ti(dsit) (dsit = 1,3-dithiole-2-thione-4,5-diselenato) and Cp2Ti(ddds) (ddds = 5,6-dihydro-1,4-dithiine-2,3-diselenato) is performed based on structural and variable-temperature NMR data. Preparation of Cp2Ti[Se2C2Z(CF3)] involves the reaction of Cp2TiSe5 with an excess of methyl-4,4,4-trifluorotetrolate while Cp2Ti(bds) is obtained from the bds2− diselenolate and Cp2TiCl2. Their X-ray crystal structures have been determined, showing that Cp2Ti(bds) is not isostructural with the sulfur analog Cp2Ti(bdt). Similarly the structures of Cp2Ti(dsit) and Cp2Ti(Se2C2Z2) were also determined from single crystal X-ray diffraction. All complexes exhibit a strong folding of the metallacycle along the Se?Se hinge, ranking from 47.8° in Cp2Ti(Se2C2Z2) to 52.3° in Cp2Ti(ddds). VT NMR investigations on Cp2Ti[Se2C2Z(CF3)] and Cp2Ti(ddds), complementing earlier results on the other complexes, show that the largest activation energies and associated folding angles are observed with the most electron rich diselenolenes (ddds, bds), a behavior closely related to that observed earlier in dithiolene complexes.  相似文献   

19.
The dithiolene ligand transfer reaction between Ni(S2C2Ph2)2 (1) and CpMo(CO)3Cl (2; Cp = eta-C5H5) affords the neutral paramagnetic molybdenum bis(dithiolene) complex CpM(S2C2Ph2)2 (3), which has been structurally characterized. As found in other d1 complexes of this type, one dithiolene ligand is planar while the other is significantly folded toward the Cp ligand. An unexpected second product of the reaction is the unusual trinuclear species Ni[Mo(S2C2Ph2)2Cp]2 (4), which in the solid state contains three different dithiolene bonding modes (terminal, bridging, and semi-bridging) in the same molecule. Complex 4 can also be synthesized by displacement of the diene ligands in Ni(cod)2 with 2 equiv of 3. In contrast, the reaction of nickelocene with 3 proceeds by displacement of the Cp ligands in a stepwise manner to give initially the dinuclear species NiMo(mu-S2C2Ph2)2Cp2 5, which then reacts further with 3 to produce 4.  相似文献   

20.
A series of new complexes of multi-sulfur 1,2-dithiolene ligands, [Ru(bipy)3][Ni(L)2]2 (bipy?=?2,2′-bipyridine; L?=?pddt (6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate), dddt (5,6-dihydro-1,4-dithiin-2,3-dithiolate)), have been synthesized and characterized. One typical complex, [Ru(bipy)3][Ni(pddt)2]2·2H2O (1), crystallized in an acentric space group of P212121, with the cell dimensions of a?=?8.634(1), b?=?14.560(1), c?=?49.889(5)?Å, α?=?β?=?γ?=?90°, and Z?=?4. It consists of alternating columns of cations and anions along the a direction. The structure was refined by full matrix least squares methods to R 1?=?0.0340, wR 2?=?0.0670. Magnetic studies on [Ph2Cr][Ni(dddt)2] are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号