共查询到20条相似文献,搜索用时 15 毫秒
1.
Preliminary results of ab initio unrestricted Hartree-Fock calculations for the potential energy surface for the reaction N+ + H2 → NH+ + H are reported. For the collinear approach of N+ to H2, the 3Σ? surface has no activation barrier and has a shallow well (ca. 1 eV). For perpendicular approach (C2v symmetry) the 3B2 state is of high energy, the 3A2 state has a shallow well but as the bond angle increases the 3B1 state decreases in energy to become the state of lowest energy. Neither the collinear nor the perpendicular approaches give adiabatic pathways to the deep potential well of 3B1 (HNH)+. 相似文献
2.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σ−g) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely. 相似文献
3.
Theoretical investigations on the kinetics of the elementary reaction H2O2+H→H2O+OH were performed using the transition state theory (TST). Ab initio (MP2//CASSCF) and density functional theory (B3LYP) methods were used with large basis set to predict the kinetic parameters; the classical barrier height and the pre-exponential factor. The ZPE and BSSE corrected value of the classical barrier height was predicted to be 4.1 kcal mol−1 for MP2//CASSCF and 4.3 kcal mol−1 for B3LYP calculations. The experimental value fitted from Arrhenius expressions ranges from 3.6 to 3.9 kcal mol−1. Thermal rate constants of the title reaction, based on the ab initio and DFT calculations, was evaluated for temperature ranging from 200 to 2500 K assuming a direct reaction mechanism. The modeled ab initio-TST and DFT–TST rate constants calculated without tunneling were found to be in reasonable agreement with the observed ones indicating that the contribution of the tunneling effect to the reaction was predicted to be unimportant at ambient temperature. 相似文献
4.
The mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction has been examined using ab initio molecular orbital methods. Ground-state and first-excited-state potential surfaces were plotted at the FOCI/cc-pVTZ level of theory as functions of two appropriate internal degrees of freedom. A conical intersection was found on the Cs pathway that is symmetric with respect to the plane perpendicular to the molecular plane of C2v H2NO(2B1). It is therefore considered that trajectories that start from H2NO(2B1) towards the product region detour around the conical intersection, pass through the neighborhood of the transition state that is located at the saddle point on the Cs pathway, and finally reach the products, NO(2Π)+H2. Thus we can explain the mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction, which has remained unclear to date. 相似文献
5.
Non-empirical self-consistent-field calculations have been carried out for 38 points on the potential surface for the Cl + H2 → ClH + H chemical reaction. A basis set of seven s, five p, and one d functions on chlorine and three s and one p on each hydrogen atom was used. The least energy path occurs for the linear Cl---H---H arrangement. A much higher barrier is found for the approach of Cl along the H---H perpendicular bisector. The linear barrier height is predicted to be 26.2 kcal/mole and the saddle point occurs for R(Cl---H) ≈ 1.46 Å, R(H---H) ≈ 0.94 Å. The experimental activation energy is 5.5 kcal/mole. It seems likely that a general feature of the Hartree-Fock approximation is an overestimation of barrier heights. The exothermicity is calculated to be −6.7 kcal/mole, compared to the near Hartree-Fock result −2.3 kcal/mole and experiment −3.0 kcal/mole. 相似文献
6.
Branko S. Jursic 《Journal of Molecular Structure》1998,430(1-3):17-22
The activation barrier for the CH4 + H → CH3 + H2 reaction was evaluated with traditional ab initio and Density Functional Theory (DFT) methods. None of the applied ab initio and DFT methods was able to reproduce the experimental activation barrier of 11.0-12.0 kcal/mol. All ab initio methods (HF, MP2, MP3, MP4, QCISD, QCISD(T), G1, G2, and G2MP2) overestimated the activation energy. The best results were obtained with the G2 and G2MP2 ab initio computational approaches. The zero-point corrected energy was 14.4 kcal mol−1. Some of the exchange DFT methods (HFB) computed energies which were similar to the highly accurate ab initio methods, while the B3LYP hybrid DFT methods underestimated the activation barrier by 3 kcal mol−1. Gradient-corrected DFT methods underestimated the barrier even more. The gradient-corrected DFT method that incorporated the PW91 correlational functional even generated a negative reaction barrier. The suitability of some computational methods for accurately predicting the potential energy surface for this hydrogen radical abstraction reaction was discussed. 相似文献
7.
Woon DE 《The Journal of chemical physics》1996,105(22):9921-9926
The H + CO --> HCO reaction has been characterized with correlation consistent basis sets at five levels of theory in order to benchmark the sensitivities of the barrier height and reaction ergicity to the one-electron and n-electron expansions of the electronic wave function. Single and multireference methods are compared and contrasted. The coupled cluster method RCCSD(T) was found to be in very good agreement with Davidson-corrected internally-contracted multireference configuration interaction (MRCI+Q). Second-order Moller-Plesset perturbation theory (MP2) was also employed. The estimated complete basis set (CBS) limits for the barrier height (in kcal/mol) for the five methods, including harmonic zero-point energy corrections, are MP2, 4.66; RCCSD, 4.78; RCCSD(T), 4.15; MRCI, 5.10; and MRCI+Q, 4.07. Similarly, the estimated CBS limits for the ergicity of the reaction are: MP2, -17.99; RCCSD, -13.34; RCCSD(T), -13.79; MRCI, -11.46; and MRCI+Q, -13.70. Additional basis set explorations for the RCCSD(T) method demonstrate that aug-cc-pVTZ sets, even with some functions removed, are sufficient to reproduce the CBS limits to within 0.1-0.3 kcal/mol. 相似文献
8.
Shen-Min Li Xin Yu Zhen-Feng Xu Ze-Sheng Li Chia-Chung Sun 《Journal of Molecular Structure》2001,540(1-3):221-229
Ab initio direct dynamics method has been used to study the title reaction. Electronic structure information including geometries, gradients and force constants (Hessians) are calculated at the UQCISD/6-311+G** level. Energies along the minimum energy path are improved by a series of single-point G2//QCISD calculations. The changes of the geometries, vibratioanal frequencies, potential energies and total curvature along the reaction path are discussed. The rate constants in the temperature range 200–3000 K are calculated by canonical variational transition state theory with small-curvature tunneling correction (CVT/SCT) method. The results show that the variational effect is small and in the lower temperature range, the small curvature tunneling effect is important for the reaction. 相似文献
9.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6. 相似文献
10.
Xiang Zhang Yi-hong Ding Ze-sheng Li Xu-ri Huang Chia-chung Sun 《Chemical physics letters》2000,330(5-6):577-584
The ab initio direct dynamics method at the G2//UQCISD/6-311 + G(d,p) level is employed to study the hydrogen abstraction reaction C2(3Πu)+H2 → C2H+H over a wide temperature range 100–4650 K. The barrier heights obtained for the forward and reverse reactions are 7.78 and 17.53 kcal/mol, respectively. Comparing with one recent experiment, the calculated forward rate constants over the temperature range 2580–4650 K are about 4.4–13.5 times greater and show a steeper temperature-dependent effect. This indicates that further experimental investigation on this simple radical reaction may still be desired. Finally, G2//UQCISD/6-311 + G(2df,2p) calculations are performed to test the reliability of the G2//UQCISD/6-311 + G(d,p) results. 相似文献
11.
The N2H potential energy surface has been examined by ab initio molecular orbital theory using the 6-31G** basis set with correlation energy evaluated by Møller—Plesset perturbation theory to fourth order. The ΔE for N2H → N2 + H is ?14.4 kcal mol?1 and the barrier to dissociation is 10.5 kcal mol?1. Inclusion of zero-point vibrational energies reduces the barrier to 5.8 kcal mol?1. 相似文献
12.
Gunnar Nyman 《Chemical physics letters》1995,240(5-6):571-577
The effect on the thermal rate constant and the differential cross-sections of varying the dimensionality of quantum scattering calculations of a polyatomic reaction is investigated. The rotating bond approximation (RBA; 3D) and a rotating line approximation (RLA; 2D) are used for the CH4 + OH → CH3 + H2O reaction. It is found that the RBA and RLA results are in close agreement when an adiabatic treatment is used for the degree of freedom which is treated explicitly in the RBA but not in the RLA. 相似文献
13.
Lawrence L. Lohr 《Journal of Molecular Structure》1982,87(3):221-227
Ab initio calculations at the STO—3G and 4—31G levels have been carried out for the H2SO4 molecule as a function of the pair of twist angles of the HO bonds about the respective OS bonds. Values for the remaining bond angles and lengths were taken from the recent microwave structural determination by Kuczkowski et al. The results indicate a minimum energy for a structure with a (sc, sc) conformation and C2 symmetry, where sc denotes synclinal, or gauche. This structure corresponds to that observed. At a higher energy of 11.5 kJ mol?1 (4—31G) there is a structure with a (+sc, ?sc) conformation and Cs symmetry. The torsional modes corresponding to the a and b irreducible representations of the C2 point group are estimated to have frequencies of 280 and 265 cm?1, respectively. 相似文献
14.
《Chemical physics letters》2002,360(5-6):565-572
The interaction energy and van der Waals intermolecule bond length of several structures of the CO–N2 complex are calculated by the supermolecule CCSD(T) and MP4 methods using aug-cc-pVXZ (X=D,T,Q) basis sets extended by a set of midbond functions centered in the middle of the vdW bond. The most stable structures are found to be two distorted T-shaped configurations with the N atom pointing towards the C–O bond. This conclusion is compatible with the results of high-resolution infrared, microwave and millimeter studies. 相似文献
15.
Ab initio molecular orbital calculations indicate the reaction of BH3 with ethylene to proceed exothermically via an intermediate π-complex, but without an overall activation barrier. The mechanism of the reaction in the gas phase is indicated to proceed in two facile stages: the formation of the π-complex and its rearrangement to ethyl borane product. The progress of the reaction is shown pictorially by drawings of the interacting orbitals at various stages. 相似文献
16.
Ab-initio molecular orbital (MO) and direct ab initio dynamics calculations have been applied to the gas phase SN2 reaction F− + CH3Cl → CH3F + Cl−. Several basis sets were examined in order to select the most convenient and best fitted basis set to that of high-quality calculations. The Hartree–Fock (HF) 3−21+G(d) calculation reasonably represents a potential energy surface calculated at the MP2/6−311++G(2df,2pd) level. A direct ab initio dynamics calculation at the HF/3−21+G(d) level was carried out for the SN2 reaction. A full dimensional ab initio potential energy surface including all degrees of freedom was used in the dynamics calculation. Total energies and gradients were calculated at each time step. Two initial configurations at time zero were examined in the direct dynamics calculations: one is a near collinear collision, and the other is a side-attack collision. It was found that in the near collinear collision almost all total available energy is partitioned into two modes: the relative translational mode between the products (40%) and the C − F stretching mode (60%). The other internal modes of CH3F were still in the ground state. The lifetimes of the early- and late-complexes F− … CH3Cl and FCH3 … Cl− are significantly short enough to dissociate directly to the products. On the other hand, in the side-attack collision, the relative translation energy was about 20% of total available energy. 相似文献
17.
Giannoula Theodorakopoulos Ioannis D. Petsalakis Mark S. Child 《Journal of Molecular Structure》1998,434(1-3):177-182
A three-dimensional potential energy function has been calculated for the X1Σ+g state of NO+2 from ab initio MRD-CI data. With this PE function, converged vibrational calculations have also been performed for ten vibrational states, with the aid of a computer program developed in the present work for this purpose. The calculated harmonic frequencies, vibrational term values and rotational constants are in good agreement with experimental data. 相似文献
18.
Quasiclassical trajectory calculations have been performed to determine the effect of reactant collision energy on product state distributions in the reaction O(1D) + H2 → OH(2Π) + H. The product vibrational distribution becomes more excited as the collision energy is increased. This is not due to an increase in the cross section for collinear abstraction. A detailed analysis has shown that strong O---H2 repulsion, which occurs during the insertion of the O into the H---H bond, converts the kinetic energy of the reacting system to vibrational motion of the intermediate. 相似文献
19.
Bender, O'Neil, Pearson and Schaefer (BOPS) have computed ab initio energies for 232 collinear configurations of FHH, using extensive configuration interaction. We have fitted these points using an LEPS-type function. Comparison with semi-empirical surfaces for FHH shows that the general form of these surfaces is in good accord with the ab initio findings. Evidence is presented which indicates that the BOPS ab initio surface exhibits too great a drop in energy along the favoured route into the exit valley. 相似文献
20.
Branko S. Jursic 《International journal of quantum chemistry》1997,62(6):639-644
The reaction energy profile for H2 + OH → H + H2O was computed using HF, MP2, MP4, QCISD, G1, G2, and G2MP2 ab initio methods. In addition, the B3LYP, B3P86, B3PW91, BLYP, BP291, and SVWN density functional theory (DFT) methods were also used. All the ab initio methods, with the exception of the G series, produced much higher activation barriers and heats of reaction than the experimental values. On the other hand, the DFT methods produced negative forward and reverse barriers which were too low, with the exception of the hybrid DFT methods. The G2 ab initio method generated energies which deviated from the experimental values by ∼ 1 kcal/mol and therefore should be considered a very accurate computational method. The hybrid DFT methods produced positive forward reaction barriers with energies that were 2–4 kcal/mol lower than the experimental values. The geometries of the transition state and energies computed by the ab initio and DFT methods were compared. These results suggest that, in the hybrid exchange functional, the portion of the Slater exchange term should be increased. This may be the reason why the computed energies were too low. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 639–644, 1997 相似文献