首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Chemical physics》1986,104(2):325-330
The temperature dependence of the reaction rates for CN radicals with C2H4 and C2H4 and C2H2 has been measured from room temperature to 700 K. The two laser photoionization/LIF-probe technique was used by photolyzing ICN at 266 nm and monitoring CN depletion via B ↔ X LIF at 388 nm. A resistively heated slow-flow gas reactor was employed at 50 Torr total pressure for the temperature dependence study. Both reactions were found to have rate constants that decreased with temperature, fitting kC2H4 = (4.72±0.25)×10−11exp[(509±20)/T] and kC2H2 = (3.49±10−11exp[(571±23)/T] cm3 molecule−1 s−1, indicating that both reactions occur by addition—elimination mechanism. No pressure dependence was observed within experimental errors.  相似文献   

3.
Ionization efficiencies of 14 organic compounds have been measured in the wavelength region from 105 to 134nm using an ionization chamber. The compounds examined are cyclopropane, propylene, l-butene, isobutene, cis-and trans-2-butenes, cyclohexane, 1-hexane, tetramethylethylene, ethyl alcohol, dimethyl ether, n-, and iso-propyl alcohol, and ethyl methyl ether. The ionization efficiencies of cyclopropane and cyclohexane monotonically increase with increasing photon energy, but those for the others show a peak or a shoulder in the wavelength region of the present work.  相似文献   

4.
The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ? 5, for interactions involving ground state CH4, C2H6, C3H8, n-C4H10 and cyclo-C3H6. Results are also given for the related multipole polarizabilities αl, multipole sums S1/(0) and S1(?1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α1S1(?1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R?10 where R is the intermolecular separation.  相似文献   

5.
Isoelectronic molecules regarding B6H10, 2-CB5H9, 2,3-C2B4H8, 2,3,4-C3B3H7, and 2,3,4,5-C4B2H6 are studied by the density functional B3LYP/6-311G(d,p) method and the electron propagator theory in the partial third-order quasiparticale approximation, as well as the extrapolated calculation with the coupled-cluster CCSD(T) theory. The calculated ionization potentials are in good agreement with the experimental data from photoelectron spectroscopy. Valence structures are characterized with natural orbital bond (NBO) theory, exhibiting the multiple three-center two-electron bonds B-H-B, B-B-B, C-B-B, B-C-B, and C-B-C, and chemical bond rearrangements in the cations.  相似文献   

6.
Steady-state permeability coefficients have been measured for equimolar mixtures of CO2-C2H4, CO2-C3H8, and C2H4-C3H8, as well as for a mixture of 74.9 mol % CO2 and 25.1 mol % C2H4 in polyethylene membranes. The measurements were made at 20, 35, and 50°C and at pressures of up to 28 atm. Each component of the permeating mixtures studied had the effect of increasing the permeability coefficient for the other component. Furthermore, at equal partial pressures and at the same temperature, the component exhibiting the highest solubility in the polymer had the largest effect in increasing the permeability coefficient of the other component. This behavior is in agreement with the predictions of a free-volume model for the permeation of gas mixtures proposed by Fang, Stern, and Frisch. From a quantitative viewpoint, the permeability coefficients for the components of the mixtures agreed, on the average, to better than 25% with the predicted values. The theoretical permeability coefficients can be estimated from the model by using parameters determined with the pure components only.  相似文献   

7.
Pulsed laser photolysis, time-resolved laser-induced fluorescence experiments have been carried out on the reactions of CN radicals with CH4, C2H6, C2H4, C3H6, and C2H2. They have yielded rate constants for these five reactions at temperatures between 295 and 700 K. The data for the reactions with methane and ethane have been combined with other recent results and fitted to modified Arrhenius expressions, k(T) = A′(298) (T/298)n exp(?θ/T), yielding: for CH4, A′(298) = 7.0 × 10?13 cm3 molecule?1 s?1, n = 2.3, and θ = ?16 K; and for C2H6, A′(298) = 5.6 × 10?12 cm3 molecule?1 s?1, n = 1.8, and θ = ?500 K. The rate constants for the reactions with C2H4, C3H6, and C2H2 all decrease monotonically with temperature and have been fitted to expressions of the form, k(T) = k(298) (T/298)n with k(298) = 2.5 × 10?10 cm3 molecule?1 s?1, n = ?0.24 for CN + C2H4; k(298) = 3.4 × 10?10 cm3 molecule?1 s?1, n = ?0.19 for CN + C3H6; and k(298) = 2.9 × 10?10 cm3 molecule?1 s?1, n = ?0.53 for CN + C2H2. These reactions almost certainly proceed via addition-elimination yielding an unsaturated cyanide and an H-atom. Our kinetic results for reactions of CN are compared with those for reactions of the same hydrocarbons with other simple free radical species. © John Wiley & Sons, Inc.  相似文献   

8.
我们研究了CF~4/Ar混合气体微波放电产生的基态F(^2P)原子与CH~3CN,CH~3CH~2CN发生的反应,观测了不同压力下两个反应的可见区(400~900nm)化学发光.获得了产物碎片HF≠(X),CN^*(A),CH^*9(A,B)的发射光谱.并计算了CN(A→X)跃迁的Franck-condon因子以及CN(A) 态的振动布居.机理分析认为CN^*(A)是由次级反应产生的激发态分子(如CH~2CNF^*)离解而形成.  相似文献   

9.
The hydrogen abstraction reactions C2H + CH3CN --> products (R1), C2H + CH3CH2CN --> products (R2), and C2H + CH3CH2CH2CN --> products (R3) have been investigated by dual-level generalized transition state theory. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path (MEP) are performed at the BH&H-LYP and MP2 methods with the 6-311G(d, p) basis set, and the energy profiles are further refined at the MC-QCISD level of theory. The rate constants are evaluated using canonical variational transition state theory (CVT) with a small-curvature tunneling correction (SCT) over a wide temperature range 104-2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values. Our calculations show that for reaction R2, the alpha-hydrogen abstraction channel and beta-hydrogen abstraction channel are competitive over the whole temperature range. For reaction R3, the gamma-hydrogen abstraction channel is preferred at lower temperatures, while the contribution of beta-hydrogen abstraction will become more significant with a temperature increase. The branching ratio to the alpha-hydrogen abstraction channel is found negligible over the whole temperature range.  相似文献   

10.
A model complex optical potential (composed of static, exchange, polarization and absorption terms) is employed to calculate the total (elastic and inelastic) electron-atom scattering cross sections from the corresponding atomic wave function at the Hartree-Fock level. The total cross sections (TCS) for electron scattering by their corresponding molecules (C2H2, C2H4, C2H6, C3H6, C3H8 and C4H8) are firstly obtained by the use of the additivity rule over an incident energy range of 10–1000 eV. The qualitative molecular results are compared with experimental data and other calculations wherever available, good agreement is obtained in intermediate-and high-energy region.  相似文献   

11.
12.
The hydrogen transfer reaction between C2H6 and CF3 radicals, generated by the photolysis of CF3I, has been studied in the temperature range 298–617 K. The rate constant, based on the value of 1013.36 cm3 mol?1 s?1 for the recombination of CF3 radicals, is given by where k2 is in cm3 mol?1 s?1 and E is in J mol?1. These results are compared with those previously reported, and the following best value for k2 is recommended:   相似文献   

13.
Concentration-time profiles have been measured for hydroxyl radicals generated by the shock-tube decomposition of hydrogen peroxide in the presence of a variety of additives. At temperatures close to 1300°K the rate constants for the reaction are found to be in the ratio 0.18:0.19:0.59:1.00:2.33:2.88 for the additives CO:CF3H:H2:CH4:C2H4:C2H6, respectively.  相似文献   

14.
15.
16.
The relative OH reaction rates from the simulated atmospheric oxidation of 4-methyl-2-pentanone, trans-4-octene, and trans-2-heptene have been measured. Reactions were carried out at 297 ± 2 K in 100-liter FEP Teflon®-film bags. The OH radicals were produced from the photolysis of methyl nitrite. The measured rate constants (×1011 cm3 molecule?1 s?1) were as follows: 6.77 ± 0.50 for trans-4-octene, 1.40 ± 0.07 for 4-methyl-2-pentanone, and 6.70 ± 0.23 for trans-2-heptene using an absolute rate constant of 2.63 × 1011 cm3 molecule?1 s?1 for the reaction of OH with propene; the principal reference organic. © John Wiley & Sons, Inc.  相似文献   

17.
Rate constants for the reactions of atomic oxygen (O3P) with C2H3F, C2H3Cl, C2H3Br, 1,1-C2H2F2, and 1,2-C2H2F2 have been measured at 307°K using a discharge-flow system coupled to a mass spectrometer. The rate constants for these reactions are (in units of 1011 cm3 mole?1 s?1) 2.63 ± 0.38, 5.22 ± 0.24, 4.90 ± 0.34, 2.19 ± 0.18, and 2.70 ± 0.34, respectively. For some of these reactions, the product carbonyl halides were identified.  相似文献   

18.
19.
尹汉东  王传华  邢秋菊 《结构化学》2004,23(10):1127-1132
1 INTRODUCTION The chemistry of organotin(IV) complexes was extensively studied due to their biological activity and coordination chemistry[1~7]. More recently, phar- maceutical properties of alkyltin(IV) complexes with dithiocarbamate ligands have bee…  相似文献   

20.
We have functions expressed as antisymmetrized products of strongly orthogonal geminals have been evaluated for some three membered ring molecules. GF results are compared with previously computed SCF-MO results, obtained employing the same atomic basis. Transferability features of bonds and inner shells are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号