首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A series of photochromic phosphotungstic acid (PWA)/SiO2 composites were synthesized using the sol-gel method. Depending on the feeding schedule of PWA during synthesis, the size of the formed PWA/SiO2 particles varied considerably from as small as 1.2 nm to ca. 10 nm. With decreasing silica particle size, the total contact area/interaction between SiO2 and PWA increases, as revealed by FT-IR and solid-state 29Si-NMR analyses. Particularly, when the size of PWA/SiO2 is ~1 nm, crystallization of PWA is inhibited, and PWA presents as amorphous molecular entities distributing uniformly in the SiO2 host, which is in evidence in the XRD spectroscopy and HR-TEM imaging. In contrast, substantial crystallization of PWA takes place when PWA/SiO2 particles are as large as 10 nm, in which case less amount of surface free Si-OH is available for PWA to make bonds with. Photochromism occurs activated by ultraviolet light irradiation. The rate of coloration/bleaching is found to depend strongly on the particle size of PWA/SiO2; specifically, the rate increases twice when the particle size is reduced from 10 nm to 1.2 nm.  相似文献   

2.
Heteropolyacid H6P2W18O62·24H2O (WD) supported on silica (WD/SiO2) has been used as an effective catalytic system for the synthesis of various 1,2,4,5-tetrasubstituted imidazoles by four-component condensation of benzil, aldehydes, amines and ammonium acetate under solvent-free conditions. This approach can be useful for three-component synthesis of 2,4,5-trisubstituted imidazoles. The same reactions were repeated by using benzoin instead of benzil.  相似文献   

3.
This paper describes the preparation of SiO2 stabilized Pt/C catalyst (SiO2/Pt/C) by the hydrolysis of alkoxysilane, and examines the possibility that the SiO2/Pt/C is used as a durable cathode catalyst for proton exchange membrane fuel cells (PEMFCs). TEM and XRD results revealed that the hydrolysis of alkoxysilane did not significantly change the morphology and crystalline structure of Pt particles. The SiO2/Pt/C catalyst exhibited higher durability than the Pt/C one, due to the facts that the silica layers covered were beneficial for reducing the Pt aggregation and dissolution as well as increasing the corrosion resistance of supports, although the benefit of silica covering was lower than the case of Pt/CNT catalyst. Also, it was observed that the activity of the SiO2/Pt/C catalyst for the oxygen reduction reaction was somewhat reduced compared to the Pt/C one after the silica covering. This reduction was partially due to the low oxygen kinetics as revealed by the rotating-disk-electrode measurement. Silica covering by hydrolysis of only 3-aminopropyl trimethoxysilane is able to achieve a good balance between the durability and activity, leading to SiO2/Pt/C as a promising cathode catalyst for PEMFCs.  相似文献   

4.
Cu/SiO2 catalysts with different bimodal pore structures adjusted by the ratio of HMS and silica sol were prepared via modified impregnation method. Structure evolutions of the catalyst were systematically characterized by N2-physisorption, X-ray diffraction, H2 temperature-programmed reduction, N2O titration and X-ray photoelectron spectroscopy. The results show that the composite silica supported copper catalysts showed remarkably enhanced catalytic performance in the selective hydrogenation of dimethyl oxalate to ethylene glycol compared to the individual silica supported ones obtained by the same method. The dimethyl oxalate conversion and the ethylene glycol selectivity can reach 100% and 98% at 473 K with 2.5 MPa H2 pressure and 1.5 h−1 liquid hour space velocity of dimethyl oxalate over the optimized Cu/SiO2 catalyst. The remarkably enhanced catalytic performance of Cu/SiO2 catalysts might be attributed to the homogeneous dispersion and uniformity of the active copper species and to the larger copper surface areas attained on the HMS supports with large pore diameters and surface areas.  相似文献   

5.
Novel egg-shell structured monometallic Pd/SiO2 and bimetallic Ca-Pd/SiO2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl2 and Ca(NO3)2·4H2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO2 samples and the Pd particle size in Ca-Pd/SiO2 was smaller than that in Pd/SiO2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d5/2 binding energies of Pd/SiO2 and Ca-Pd/SiO2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO2 and to both oxygen and Ca in Ca-Pd/SiO2. The activity of Ca-Pd/SiO2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmolCO mol−1Pd s−1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.  相似文献   

6.
Several iridium supported catalyst were studied by means of x-ray photoelectron spectroscopy. These catalysts contain 5 wt. % iridium impregnated from aqueous solution of hexachloroiridic acid on δ-alumina, silica, zinc oxide, titanium oxide and Ketjen silica alumina and are used in catalytic oxidation of olefins.Photoelectron spectra of oxides, impregnated oxides and hydrogen reduced catalysts have been recorded. Chemical shifts observed on impregnated oxides indicate that alumina and titanium oxide make possible the reduction of some of the hexachloroiridates ions into an iridium(III) chloro complex. This reaction is not detected with zinc oxide and silica.For the reduced catalysts, the iridium 4f doublet is shifted to higher binding energies with respect to that of unsupported iridium and the iridium lines have an anomalous breadth. We have postulated that an electronic interaction occurs between the support acting as an electron acceptor and the metal acting as an electron donor. The chemical shifts depend on the nature of the support, increasing ZnO < SiO2 < TiO2 < Al2O3, and may be correlated with the Fermi level in the metallic oxide. With silica-alumina and progressively de-aluminated silica-alumina, a simultaneous variation of the iridium chemical shift and catalytic activity is observed.  相似文献   

7.
An essential feature of the ambient pressure dried aerogel manufacturing process is the end-capping of the reactive silanol groups in the silica wet gel. In this report, we have presented the effect of two different trimethyl silylating agents viz. trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) on the hydrophobic and physical properties of ambient pressure dried silica aerogels. The hydrogels were prepared by sol-gel processing of sodium silicate precursor (Na2SiO3) in the presence of acetic acid catalyst followed by vapour passing treatment and different solvent exchanging steps. The silylating agent in hexane was used for end-capping of the silanols present on the silica surface of the gel. To study silylation behavior silylating agent/Na2SiO3 molar ratio was varied from 2.4 to 5.6. The aerogels have been characterized by density, % of volume shrinkage, porosity, % of optical transmission, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA) and contact angle measurements.  相似文献   

8.
In this paper, poly(4vinylpyridine-co-styrene) (P(4VP-co-St)) was grafted on silica gel particles in the manner of “grafting from”, and the grafting particle P(4VP-co-St)/SiO2 was gained. The grafting particle P(4VP-co-St)/SiO2 is a novel kind of supports for immobilizing metalloporphyrin catalysts. Then, the immobilization of cobalt tetraphenylporphyrin (CoTPP) on the supports P(4VP-co-St)/SiO2 was carried out via the axial coordination reaction between CoTPP and the pyridine groups of the grafted P(4VP-co-St), resulting in the heterogenised catalysts CoTPP-P(4VP-co-St)/SiO2. The synthesized catalysts were characterized by FTIR and the axial coordination process between CoTPP and the grafted P(4VP-co-St) was confirmed by UV-vis. The effects of various factors on the immobilization reaction of CoTPP were studied in detail. Finally, the catalytic performance of CoTPP-P(4VP-co-St)/SiO2 in the catalytic oxidation process of ethyl benzene was investigated. The experimental results show that the axial coordination reaction is a very easy and novel method for favorably immobilizing CoTPP onto the P(4VP-co-St)/SiO2 surfaces. During the immobilization process of CoTPP on P(4VP-co-St)/SiO2, the most bonding amount of CoTPP (0.19 g/g) is obtained under the lower temperature (5 °C) and the higher concentration of CoTPP(6.0 mg/ml) lasting 4 h. Moreover, the supported catalyst CoTPP-P(4VP-co-St)/SiO2 can effectively activate the dioxygen, and obviously catalyze the transform of ethylbenzene into acetophenone. So it exhibits the fine catalytic activity.  相似文献   

9.
Preparation and characterization of oriented silica nanowires   总被引:1,自引:0,他引:1  
Large-scale of oriented closely packed silica nanowire bunches have been synthesized by using large size (1-10 μm in diameter), low melting point tin droplets as catalyst on silicon wafers at 980 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that the amorphous silica nanowires have lengths of 50-100 μm and diameters of 100-200 nm. Unlike any previous observed results using high melting point metal (such as gold and iron) as catalyst, the Sn catalyst growth exhibits many interesting phenomena. Each Sn ball can simultaneously catalyze the growth of many silica nanowires, which is quite different from the conventional vapor-liquid-solid process.  相似文献   

10.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

11.
Amorphous silica [SiOx (1<x<2)] nanowires were fabricated on silicon substrate in an acidic environment by heating the mixture of ZnCl2, and VO2 powders at 1100 °C. The length of SiOx nanowires ranges from micrometers to centimeters, with uniform diameters of 10–500 nm depending on substrate temperature. Room-temperature photoluminescence spectra of the SiOx nanowires showed two strong luminescence peaks in the red and green region, respectively. The photoluminescence was suggested to originate from nonbridging oxygen hole center (red band), and hydrogen-related species in the structure of SiOx (green band). The study on chemical reactions and growth of the SiOx nanowires revealed the formation process of silica nanowires in acidic environment was closely related to the vapor–solid–liquid mechanism.  相似文献   

12.
Three different shapes of SiC/SiO2 core–shell nanowires were synthesized on Si substrates through a reaction between methane and silica using iron as catalyst. Analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicated that catalyst morphology was the key factor for the formation of these three different products. The field emission properties of these three nanowires were investigated. Comparing the field emission results of these three nanowires, we can obtain a conclusion that a vertically well-aligned orientation to the substrate played a very significant role in improving the field emission properties when the emitters are up to a considerable number.  相似文献   

13.
Fe3O4 nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. Grafting of chlorosulfuric acid on the amino-functionalized Fe3O4 nanoparticles afforded sulfamic acid-functionalized magnetic nanoparticles (SA-MNPs). SA-MNPs was found to be a mild and effective solid acid catalyst for the efficient, one-pot, three-component synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation. This protocol afforded corresponding imidazoles in shorter reaction durations, and in high yields. This green procedure has many obvious advantages compared to those reported in the previous literatures, including avoiding the use of harmful catalysts, easy and quick isolation of the products, excellent yields, short routine, and simplicity of the methodology.  相似文献   

14.
Nano-magnetic Fe3O4 particles coated with silica are synthesized. The study of structural and magnetic properties was carried out using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer (VSM) techniques. The VSM results show that these kinds of composite particles exhibit superparamagnetic behavior with zero coercivity and remanence. The magnetic spheroid alumina carriers containing these magnetic composite particles were prepared by an internal gelation process. The SiO2 coatings prevent the reaction between Fe3O4 and Al2O3 during the sintering process and maintain the superparamagnetic behavior of the catalyst carriers.  相似文献   

15.
Ag vapor deposited on Rh(100) is investigated as a possible model for the corresponding bimetallic cluster catalyst. Ag overlayer growth follows the Frank-Van der Merwe mechanism at 300 K and the Stranski-Krastanov mechanism at 640 K. The first Ag overlayer grows epitaxially with the Rh(100) surface and forms two-dimensional islands. The second layer reconstructs forming a pseudohexagonal lattice structure with a 19% greater Ag atom density than the first layer. Neither alloy formation nor dissolution of Ag into the Rh crystal lattice is observed. The presence of Ag decreases the capacity of the Rh(100) surface for both D2 and CO chemisorption. In both cases, loss of adsorption sites on the Rh surface is attributed to physical site blocking by islands of Ag. Very weakly bound CO adsorption sites are observed which are attributed to CO bonding to Ag atoms in the first Ag overlayer. The Ag/Rh(100) system is found to be very similar to the analogous SiO2 supported catalyst.  相似文献   

16.
Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.  相似文献   

17.
Carbon–silica nanocomposites obtained by rice husk carbonization in a fluidized-bed reactor using a deep oxidation copper–chromium catalyst were studied. Dispersion characteristics of the silica phase in these systems were determined by small-angle X-ray scattering (SAXS) using the full contrast technique. SiO2 was found in the initial rice husk as compact nanoparticles having a wide size distribution. This distribution consists of a narrow fraction with particle sizes from 1 to 7 nm and a wider fraction with particle sizes from 8 to 22 nm. Oxidative heat treatment of rice husk in a fluidized bed in the presence of the catalyst decreased the fraction of small SiO2 particles and increased the fraction of large ones. It was demonstrated that the particle size of silica in the carbon matrix can be determined selectively for deliberate design of porous carbon materials with desired properties.  相似文献   

18.
《Composite Interfaces》2013,20(3):271-276
HEC-g-AA/SiO2 hybrid materials are prepared through a graft copolymerization reaction between acrylic acid (AA) monomer and hydroxyethyl cellulose (HEC), in the presence of a silica sol. The microstructure and properties of the hybrid materials are characterized by Fourier transform infrared spectra (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. The results show that a rigid inorganic phase SiO2 is dispersed in flexible organic continuous phase uniformly. HEC-g-AA/SiO2 hybrid material has no obvious phase separation in the presence of the crosslinking agent. The thermal performances of HEC-g-AA/SiO2 are excellent, and the glass transition temperature (T g) increases with the increased amount of the crosslinking agent.  相似文献   

19.
Aligned straight silica nanowires (NWs) have been synthesized on Si wafer by thermal evaporation of mixed powders of zinc carbonate hydroxide and graphite at 1100 °C and condensation on Si substrate without using any catalyst. The straight silica NWs have diameters ranging from 50 to 100 nm, and lengths of several micrometers, with cone-shaped tips at their ends. High deposition temperature and relatively high SiOx vapor concentration near the growth substrate would be beneficial to the formation of the aligned straight silica NWs. Different morphologies of silica nanostructures have also been obtained by varying the deposition temperature and the vapor concentration of the SiOx molecules. Room temperature photoluminescence measurements on the oriented silica NWs show that two green emission bands at 510 and 560 nm, respectively, revealing that the aligned straight silica NWs might have potential applications in the future optoelectronic devices.  相似文献   

20.
Poly(4vinylpyridine-co-styrene) (P(4VP-co-St)) was grafted on silica gel particles in the manner of “grafting from”, and the grafting particle P(4VP-co-St)/SiO2 was gained. The chloromethylation reaction for the tetraphenylporphyrin (TPP) was performed using a chloromethylation reagent, 1,4-bis(chloromethyoxy)butane which was uncarcinogenic, and the tetra-chloromethylphenyl-porphyrin (TMCPP) was prepared. Then, the quaternization reaction between the benzyl chloride groups on TMCPP and pyridine groups of the grafted P(4VP-co-St) macromolecules occurred and the bonding of TMCPP on the particles P(4VP-co-St)/SiO2 was realized, resulting in the functional composite-type particles TMCPP-P(4VP-co-St)/SiO2. Subsequently, the metallation of the bonded particles TMCPP-P(4VP-co-St)/SiO2 was carried out via the coordination reaction between TMCPP-P(4VP-co-St)/SiO2 and metal salt, resulting in the supported metalloporphyrin (MP) catalysts MP-P(4VP-co-St)/SiO2. The supported catalysts were characterized by UV-Vis spectra. The effects of various factors on the bonding process of TMCPP on P(4VP-co-St)/SiO2 were studied in detail. In addition, the catalytic activity of the supported catalysts MP-P(4VP-co-St)/SiO2 have been studied in oxidation process of ethyl benzene with molecular oxygen to acetophenone without the use of sacrificial co-reductant. The experimental results showed that the tetra-chloromethylphenyl-porphyrin (TMCPP) could be successfully bonded onto the P(4VP-co-St)/SiO2 surfaces by means of the quaternization reaction between TMCPP and the pyridine groups on grafted P(4VP-co-St) macromolecules. The supported catalysts MP-P(4VP-co-St)/SiO2 exhibited the fine catalytic activity. Moreover, the supported cobalt porphyrin was more active than the supported iron and manganese porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号