首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈骏  余洪伟 《中国物理快报》2004,21(12):2362-2364
The effects of quantum electromagnetic fluctuations upon the motion of a test charged particle are examined in a cylindrical spacetime in which one spatial is compactified. The mean squared fluctuations in the velocity and position of the test particle are calculated. It is found that the random motion of the test particle will be anisotropic. The possible consequences for theories with extra compactified spatial dimensions are discussed.  相似文献   

2.
We consider an inertial two-level atom in interaction with a real massless scalar quantum field in a spacetime between two parallel reflecting plane boundaries, and calculate the contributions of vacuum fluctuations and radiation reaction to the rate of change of the atomic energy. Our results show that there exists a regime of the separation L between the two boundaries such that the excited atom's spontaneous emission is impossible. There also exist certain values of the atom's position such that the corrections due to the presence of boundaries balance each other, so that the atom's spontaneous emission rate is the same as if there were no boundaries at all.  相似文献   

3.
刘辽 《中国物理快报》2008,25(8):2789-2790
Previously we introduce a new way to quantize the static SchwarzschiM black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole [Chin. Phys. Lett. (2004) 21 1887]. Here we try to extend the above method to quantize the static de Sitter (SDS) spacetime and establish a quantum theory of both SDS spaze and the energy density contributed from the cosmological constant.  相似文献   

4.
We calculate the contributions of the vacuum fluctuations and radiation reaction to the rate of change of the mean atomic energy for a multi-level hydrogen atom in the multipolar coupling scheme in a spacetime with a reflecting boundary. Our results show that, due to the presence of the boundary, the polarizations of the atom in the parallel direction and in the normal direction are weighted differently in terms of their contributions to the spontaneous emission rate, which is an oscillating function of the atom distance from the boundary. The possible experimental implications of our result are briefly discussed.  相似文献   

5.
We consider, from the point of view of a coaccelerated frame, a uniformly accelerated multi-level atom in interaction with vacuum quantum electromagnetic fields in the multi-polar coupling scheme, and calculate the rate of change of the atom's energy assuming a thermal bath at a finite temperature T in the Rindler wedge. Comparison with the spontaneous excitation rate of the atom calculated in the instantaneous inertial frame of the atom shows that both the inertial and coaccelerated observer would agree with each other only when the temperature of the thermal bath equals the FDU value TFDU = α/2π.  相似文献   

6.
We study the energy level shifts of an accelerated multilevel atom in dipole coupling to the derivative of a quantum massless scalar field and separately calculate the contributions of vacuum fluctuations and radiation reaction to the shifts. It is found that, in contrast to the case of a monopole-like interaction, both the vacuum fluctuations and radiation reaction contributions are changed by acceleration, and they all contain non-thermal correction terms. Our results suggest that the effect of acceleration on the energy shifts is dependent on the type of the interaction between the atom and the quantum field.  相似文献   

7.
8.
We study asymptotic dynamics of photons propagating in the polarized vacuum of a locally de Sitter Universe. The origin of the vacuum polarization is fluctuations of a massless, minimally coupled, scalar, which we model by the one-loop vacuum polarization tensor of scalar electrodynamics. We show that late time dynamics of the electric field on superhorizon scales approaches that of an Airy oscillator. The magnetic field amplitude, on the other hand, asymptotically approaches a nonvanishing constant (plus an exponentially small oscillatory component), which is suppressed with respect to the initial (vacuum) amplitude. This implies that the asymptotic photon dynamics is more intricate than that of a massive photon obeying the local Proca equation.  相似文献   

9.
何唐梅  张靖仪 《中国物理快报》2007,24(12):3336-3339
We investigate the tunnelling radiation of charged and magnetized massive particles from a Banados-Teitelboim- Zanelli (BTZ) black hole by extending the Parikh-Wilczek tunnelling framework. In order to calculate the emission rate, we reconstruct the electromagnetic field tensor and the Lagrangia~n of the field corresponding to the source with electric and magnetic charges, and treat the charges as an equivalent electric charge for simplicity in the later calculation. The result supports Parikh-Wilczek's conclusion, that is, the Hawking thermal radiation actually deviates from perfect thermality and agrees with an underlying unitary theory.  相似文献   

10.
We consider the tunnelling of charged spin 1/2 fermions from a Kerr–Newman black hole and demonstrate that the expected Hawking temperature is recovered. We discuss certain technical subtleties related to the obtention of this result.  相似文献   

11.
We study the radiative energy level shifts of a two-level atom in dipole coupling to the derivative of a massless scalar quantum field in a spacetime with a perfectly reflecting boundary, and calculate the contributions of vacuum fluctuations and radiation reaction to the level shift. It is found that the energy level shift of the excited state is an oscillating function of the atom's distance from the boundary and it can either be positive or negative, while that of the ground state is always positive. The most remarkable feature is that the energy level shift of the ground state behaves like 1/z^4 when the atom's distance from the boundary, z, is very large as compared to the transition wavelength of the atom, while it behaves like 1/z^3 when z is very small  相似文献   

12.
We show that the recent tunneling formulas for black hole radiation in static, spherically symmetric spacetimes follow as a consequence of the first law of black hole thermodynamics and the area-entropy relation based on the radiation temperature. A tunneling formula results even if the radiation temperature is different from the one originally derived by Hawking and this is discussed in the context of the recent factor of 2 problem. In particular, it is shown that if the radiation temperature is higher than the Hawking temperature by a factor of two, thermodynamics then leads to a tunneling formula which is exactly the one recently found to be canonically invariant.  相似文献   

13.
It has been widely believed that the Hawking temperature for a black hole is uniquely determined by its metric and positive. But, I argue that this might not be true in the recently discovered black holes which include the exotic black holes and the black holes in the three-dimensional higher curvature gravities. I argue that the Hawking temperatures, which are measured by the quantum fields in thermal equilibrium with the black holes, might not be the usual Hawking temperature but the new temperatures that have been proposed recently and can be negative. The associated new entropy formulae, which are defined by the first and second laws of thermodynamics, versus the black hole masses show some genuine effects of the black holes which do not occur in the spin systems. Some cosmological implications and physical origin of the discrepancy with the standard analysis are noted also.  相似文献   

14.
Recent research shows that fermions tunnelling can result in correct Hawking temperature of a black hole. In this letter, choosing a set of appropriate matrices γμγμ, we attempt to study Hawking radiation of Dirac particles across the horizons of the GHS and non-extremal five-dimensional D1–D5 black holes in string theory by using fermions tunnelling method. Finally, the expected Hawking temperatures of the GHS and non-extremal D1–D5 black holes are correctly recovered.  相似文献   

15.
We calculate the Casimir effect at finite temperature in Minkowski spacetime by using statistical method, the approximate expressions of the Casimir effect in the low and high temperature limits are also discussed. Then employing some general properties of the renormalized stress tensor, we obtain the Casimir energy stress tensor in Hattie-Hawking state.  相似文献   

16.
Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle, we calculate the statistical entropy of the scalar field in the global monopole black hole spacetime without any artificial cutoff. It is shown that the entropy is proportional to the horizon area.  相似文献   

17.
M. Leclerc 《Annals of Physics》2007,322(10):2279-2303
Canonical Hamiltonian field theory in curved spacetime is formulated in a manifestly covariant way. Second quantization is achieved invoking a correspondence principle between the Poisson bracket of classical fields and the commutator of the corresponding quantum operators. The Dirac theory is investigated and it is shown that, in contrast to the case of bosonic fields, in curved spacetime, the field momentum does not coincide with the generators of spacetime translations. The reason is traced back to the presence of second class constraints occurring in Dirac theory. Further, it is shown that the modification of the Dirac Lagrangian by a surface term leads to a momentum transfer between the Dirac field and the gravitational background field, resulting in a theory that is free of constraints, but not manifestly hermitian.  相似文献   

18.
In this article, we formulate the study of the unitary time evolution of systems consisting of an infinite number of uncoupled time-dependent harmonic oscillators in mathematically rigorous terms. We base this analysis on the theory of a single one-dimensional time-dependent oscillator, for which we first summarize some basic results concerning the unitary implementability of the dynamics. This is done by employing techniques different from those used so far to derive the Feynman propagator. In particular, we calculate the transition amplitudes for the usual harmonic oscillator eigenstates and define suitable semiclassical states for some physically relevant models. We then explore the possible extension of this study to infinite dimensional dynamical systems. Specifically, we construct Schrödinger functional representations in terms of appropriate probability spaces, analyze the unitarity of the time evolution, and probe the existence of semiclassical states for a wide range of physical systems, particularly, the well-known Minkowskian free scalar fields and Gowdy cosmological models.  相似文献   

19.
Photoluminescence from a gold nanotip, which is induced by surface plasmons propagating over a curved tapered nanotip surface is considered in a co-moving accelerated reference frame. Similar to the surface-enhanced Raman scattering (SERS) effect, nonlinear optical mixing of the surface plasmons with the Unruh quanta is supposed to be enhanced by many orders of magnitude.  相似文献   

20.
We study the properties of graphene wormholes in which a short nanotube acts as a bridge between two graphene sheets, where the honeycomb carbon lattice is curved from the presence of 12 heptagonal defects. By taking the nanotube bridge with very small length compared to the radius, we develop an effective theory of Dirac fermions to account for the low-energy electronic properties of the wormholes in the continuum limit, where the frustration induced by the heptagonal defects is mimicked by a line of fictitious gauge flux attached to each of them. We find in particular that, when the effective gauge flux from the topological defects becomes maximal, the zero-energy modes of the Dirac equation can be arranged into two triplets, that can be thought as the counterpart of the two triplets of zero modes that arise in the dual instance of the continuum limit of large spherical fullerenes. We further investigate the graphene wormhole spectra by performing a numerical diagonalization of tight-binding Hamiltonians for very large lattices realizing the wormhole geometry. The correspondence between the number of localized electronic states observed in the numerical approach and the effective gauge flux predicted in the continuum limit shows that graphene wormholes can be consistently described by an effective theory of two Dirac fermion fields in the curved geometry of the wormhole, opening the possibility of using real samples of the carbon material as a playground to experiment with the interaction between the background curvature and the Dirac fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号