首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Er3+-doped oxyfluoride germanate glasses have been synthesized by the conventional melting and quenching method. The Judd-Ofelt intensity parameters were calculated based on the Judd-Ofelt theory and absorption spectra measurements. With the substitution of PbF2 for PbO, the Ω2 parameter decreases, while the Ω6 parameter increases. These change trends indicate that fluoride anions come to coordinate erbium cations and the covalency of the Er-O bond decreases. Structural and thermal stability properties were obtained by Raman spectra and differential thermal analysis, indicating that PbF2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were simultaneously observed at room temperature. With increasing PbF2 content, the intensity of red (657 nm) emissions increases significantly, while that of the green (525 and 546 nm) emission increases slightly. The results indicate that PbF2 has more influence on the red (657 nm) emission than the green (525 and 546 nm) emissions in oxyfluoride germanate glasses. The possible upconversion luminescence mechanisms have also been estimated and discussed.  相似文献   

2.
A blue-white emitting Sr2CeO4 phosphor was synthesized via a simple sol-gel poly vinyl alcohol (PVA)-complexing process using strontium nitrate and cerium nitrate as raw materials. The samples were characterized by TG/DTA, XRD, FTIR, SEM and photoluminescence spectroscopy. The X-ray diffraction study confirms the structure of the system to be orthorhombic. The emission spectra when excited at 267 nm peaks at ∼470 nm. The emission band is assigned to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ion. The Commission International de l'Eclairage (CIE) co-ordinates for the Sr2CeO4 sample were also calculated.  相似文献   

3.
Sr2CeO4电荷迁移发光的光谱结构规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
符史流  戴军  丁球科  赵韦人 《物理学报》2005,54(5):2369-2373
利用高温固相反应法分别合成了不同物相形成机理的Sr2CeO4,Sr 2CeO4∶Ca 2+和Sr2CeO4∶Ba2+样品,并对其光谱特性进行 了研究.结果发现,对于由SrO和CeO2直接反应生成的Sr2CeO4(Ⅰ),激发主峰位于256nm 左右;而对于SrCeO3和SrO反应生成的Sr2CeO4(Ⅱ),激发主峰位于279nm左右.在Sr2CeO4(Ⅰ)中掺入Ca2+,其激发光谱随着Ca2+离子浓度的增加逐渐接近于Sr2CeO4(Ⅱ)的激发光谱.激发主峰带应属于CeO6八面体终端Ce4+—O2-键的电荷迁移 带.对于激发光谱中340nm左右的弱激发峰,其峰值波长不受形成机理及Ca2+掺杂的影响,只是其强度 随着 激发主峰的红移而增加,它可能属于CeO6八面体平面上Ce4+—O2-键的电荷 迁移带.形成机理及Ca2+掺杂对发射光谱没有影响.Ca2+在Sr 2CeO 4(Ⅱ)与Ba2+在Sr2CeO4(Ⅰ)和(Ⅱ)中均难 于替代Sr2+的位置.  相似文献   

4.
薛书文  王恩过  张军 《中国物理 B》2011,20(7):78105-078105
Non-rare earth impurity doped Sr 2 CeO 4:X (X=Zn,Hg,Al,Ag,Cr) phosphors are prepared by using the combustion method.The structural and photoluminescent properties of the as-prepared phosphors are investigated by X-ray diffraction (XRD) and photoluminescence at room temperature.Experimental results show that zinc addition and firing processing can effectively enhance the photoluminescence of Sr 2 CeO 4 phosphors.  相似文献   

5.
Ultraviolet upconversion emissions at 262, 276, 308 and 320 nm were observed from Er3+-doped Y2O3 with a 532 nm continuous wave compact solid-state laser excitation. Power-dependence analysis demonstrates that two-photon upconversion process populates the 4D5/2, 2H9/2 and 2P3/2 states. The energy transfer upconversion (ETU) plays an important role in populating 4D5/2 and 2P3/2 states. It appears that 2P3/2 state population originates from ETU 2H11/2+2H11/24I13/2+2P3/2, moreover, a subsequent excited state absorption (ESA) from the 4I9/2 level.  相似文献   

6.
Novel Ba2ErF7 and Yb3+-doped Ba2ErF7 powders were synthesized by a coprecipitation method. In Ba2ErF7 sample, abundant upconverted emission bands from violet to infrared region are observed under 980 nm excitation, whereas only green and red emissions are observed under 812 nm excitation. Under the two excitations, the luminescence decay curves of the green and red emissions are measured and the quenching behaviors of Yb3+ doping are also explored. It is found that a suitable Yb3+ concentration can efficiently enhance the intensity ratio of the blue and violet emissions to the green and red ones, which may be due to the competition between the energy transfer process from Er3+ to Yb3+ and the sensitizing process from Yb3+ to Er3+ in Ba2ErF7:Yb3+. This indicates that the Yb3+-doped Ba2ErF7 might be a good candidate for blue and violet upconversion phosphor.  相似文献   

7.
Luminescent and morphological studies of Sr2CeO4 blue phosphor prepared from cerium-doped strontium oxalate precursor are reported. Powder samples were prepared from 5 and 25 mol% Ce3+-doped strontium oxalate as well as from a mechanical mixture of strontium oxalate and cerium oxalate at a 4:1 ratio, respectively. All the samples were characterized by XRD, IR, PLS, and SEM. The luminescent and structural properties of the Sr2CeO4 material are little affected by the SrCO3 remaining from precursors. The Sr2CeO4 material consists in one-dimensional chains of edge-sharing CeO6 octahedra that are linked together by Sr2+ ions. The carbonate ion might be associated with oxygen ions of the linear chain, and also with the oxygen atoms located in the equatorial position, which consequently affects the charge transfer bands between O2− and Ce4+. As observed by SEM, the morphological changes are related to each kind of precursor and thermal treatment, along with irregular powder particles within the size range 0.5-2 μm.  相似文献   

8.
Nano crystalline powder of Sr2CeO4 has been synthesized by sol-gel technique. The luminescence properties of the material were compared with the one synthesized by conventional solid state reaction technique. The homogeneity and uniformity of the particle prepared by this method is much better than that prepared by the solid state reaction technique. This blue emitting phosphor was characterized by X-ray diffraction, scanning electron microscopy images and luminescent measurements. The emission spectrum of the material exhibits a broad band around ∼480 nm. The photoluminescence spectra of the Sr2CeO4 reveals that the strong blue emission is assigned to the Ce4+-O2− charge transfer transition (CTT) of Sr2CeO4 and not related to lattice defect. The Commission International de l’Eclairage coordinates are x=0.16 and y=0.25.  相似文献   

9.
Eu3+掺杂的Sr2CeO4发光材料的光致发光研究   总被引:1,自引:0,他引:1       下载免费PDF全文
符史流  尹涛  丁球科  赵韦人 《物理学报》2006,55(9):4940-4945
利用高温固相反应法制备了Eu3+掺杂的Sr2CeO4样品,并对其吸附水前后的光谱特性进行了研究.结果发现,对于刚制备的Sr2-xEuxCeO4+x/2样品, 在Ce4+—O2-的电荷迁移激发中,只有强激发带(~35700cm-1)与Eu3+离子间存在能量传递,而弱激发带 (~29400cm-1)只是引起Ce4+—O2-的电荷迁移发射;在Sr2-xEuxCeO4+x/2样品吸附水后,Eu3+的线状吸收跃迁强度显著增加, Ce4+—O2-两个激发带均向Eu3+离子传递能量. Ce4+—O2-强激发带通过交换作用向Eu3+离子传递能量,而弱激发带与Eu3+离子间的能量传递机理是非辐射多极子近场力的相互作用. 关键词: 2-xEuxCeO4+x/2')" href="#">Sr2-xEuxCeO4+x/2 发光性质 能量传递 吸附水  相似文献   

10.
Blue-light emitting Sr2CeO4 phosphors were successfully prepared via a microwave-assisted solvothermal method employing ethylene glycol as a solvent. The formation of Sr2CeO4 phase began when the solvothermally derived precursors were heated at 800 °C. With increase in heating temperatures, significantly enhanced excitation and emission intensities were observed because of an increase in the amount of Sr2CeO4. Heating at 1200 °C led to a substantial decrease in mission intensity due to thermal decomposition of Sr2CeO4 at elevated temperatures. The solvothermally derived Sr2CeO4 was found to exhibit higher emission intensity than the solid-state-reaction-derived phosphors. According to the deconvoluted emission spectra, two emission peaks are attributed to two metal-to-ligand charge-transfer states. Based on the deconvoluted results, a qualitative energy-level diagram of Sr2CeO4 was proposed. VUV-excited luminescence studies for Sr2CeO4 indicate that one peak at 193 nm is assigned to the charge-transfer transition between Sr2+ and O2−.  相似文献   

11.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

12.
The competition between two laser transitions in Er:YLiF4 (4S3/2 → 4I15/2 at 551 nm and 4S3/2 → 4I13/2 at 850 nm) is studied using a model based on rate equations. The laser emission is pumped by upconversion at 795 nm; for comparison, we also discuss upconversion pumping by another mechanism, at 970 nm. The conditions that favor laser emission in various regimes on these two transitions are found.  相似文献   

13.
Cubic phase Lu2O3:Er3+/Yb3+ nanocrystal phosphors were prepared by sol–gel method. Fourier transform infrared (FT-IR) spectra were measured to evaluate the vibrational feature of the samples. Green and red radiations were observed upon 980 nm diode laser excitation. Laser power and Er3+ or Yb3+ doping concentration dependence of upconversion luminescence were studied to understand upconversion mechanisms. Excited state absorption, cross relaxation and energy transfer processes are the possible mechanisms for the visible emissions.  相似文献   

14.
Ultraviolet (UV) upconversion (UC) luminescence in Yb3+/Er3+-codoped yttrium oxide (Y2O3) nanocrystals can be enhanced by orders of magnitude via tridoping further with Li+ ions under diode laser excitation of 970 nm. Sensitized three-photon UC radiations at 390 and 409 nm, corresponding to the 4G11/24I15/2 and 4H9/24I15/2 of Er3+ ions, respectively, present an enhancement time of about 33 times, which is larger than the 24 times enhancement for the UC green radiation. The UV UC radiation at 320 nm that corresponds to the 2P3/24I15/2 of Er3+ ions has also been greatly enhanced. Theoretical calculations interpret that all the observed enhancement times of UV UC radiations arise from the prolonged lifetimes of their intermediate states.  相似文献   

15.
Well oil-dispersible SrF2:Yb3+/Er3+ upconversion (UC) nanocrystals (NCs) were easily synthesized in the water-ethanol-oleic acid-sodium oleate complex systems. The as-prepared NCs all show size-uniformity, and their sizes, morphologies can be controlled by varying the solvent and reaction time, and rectangular SrF2:Yb3+/Er3+ nanosheets with the sizes of 5-25 nm can be obtained. The possible mechanism on the nucleation and growth of nanocrystals occurred at the oleic acid/sodium oleate interface was also discussed. The size and morphology dependent UC luminescence behaviors have been observed in SrF2:Yb3+/Er3+ NCs, and their UC luminescence transitions were proposed. The as-prepared UC nanocrystals are expected to fulfill the demand for biological applications.  相似文献   

16.
采用高温固相法在800℃下制备出系列白色长余辉荧光粉Sr3Al2O5Cl2:Eu2+,Tm3+,并研究了它们的结构、形貌及发光性能。样品Sr2.91Al2O5Cl2:0.04Eu2+,0.05 Tm3+具有单一晶相和纳米纤维结构。该样品在紫外光激发下表现出两个很强的宽带发射(分别位于~448 nm和~590 nm)。它的余辉寿命大约是20 min。利用此种荧光粉所制作出的白光LED器件表现出很强的白光发射。  相似文献   

17.
Near infrared-visible upconversion in Er3+ doped orthorhombic PbF2 compound is investigated. It is experimentally observed that the red emission intensity increases monotonously with Er3+ concentration increase, while the green emission intensity first increases and then decreases. Based on the rate-equation, the energy transfers involved in the upconversion processes have been explored. It is shown that due to the different multipolar nature for the energy transfer processes of 2H11/2 (4S3/2)+4I15/24I9/2+4I13/2 and 4I11/2+4I11/24F7/2+4I15/2, the green and red upconversion emissions depend on Er3+ concentration in different ways. The theoretical results are in good agreement with the experimental observation. It is shown that the upconverted emission bands can be tuned by controlling Er3+ concentration in orthorhombic PbF2 compound, which has many photonic applications under NIR excitation.  相似文献   

18.
Upconversion (UC) luminescence of Y2O3:Ho3+, Yb3+ nanocrystals codoped with different concentrations of Eu3+ ions were investigated to improve the monochromaticity of the UC emission. The results show that the monochromaticity, quantified by a parameter SR, increases as the concentration of Eu3+ ions becomes higher, which is due to the energy transfer between 5I7 (Ho3+) and 7F6 (Eu3+). The energy transfer accelerates the relaxation of Ho3+ ions from the 5I7 to 5I8 state and then quenches the red emission. The influence of the Eu3+ concentration on the pump power dependence of the red UC fluorescence in Y2O3:Ho3+, Yb3+, Eu3+ nanocrystals is verified using the steady-state rate equation theory.  相似文献   

19.
We prepared Er3+ doped and Er3+/Yb3+ codoped Sb2O4 nanocrystals by the sol-gel method. The Raman, X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra of the samples were studied. The phonon energy of the Sb2O4 nanocrystals is very low (the maximum value being 461 cm−1). The upconversion (UC) red emission of the Er3+/Yb3+ codoped sample is very strong at 975 nm laser diode excitation. The Sb2O4 nanocrystals will be a promising luminous material.  相似文献   

20.
The hydrated oxygen deficient complex perovskite-related materials Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O were studied at high water vapour pressures over a large temperature range by electrical conductivity measurements, thermogravimetry (TG), and X-ray powder diffraction (XRPD). In humid atmospheres both materials are known to exhibit protonic conductivity below dehydration temperatures, with peak-shaped maxima at about 500 °C. In this work we show that the peaks expand to plateaus of high conductivity from 500 to 700 °C at a water vapour pressure of 1 atm. However, in situ synchrotron XRPD of Sr4(Sr2Nb2)O11·nH2O as a function of temperature shows that these observations are in fact coincident with melting and dehydration of a secondary phase Sr(OH)2. The stability of Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O in humid atmospheres is thus insufficient, causing decomposition into perovskites with lower Sr content and SrO/Sr(OH)2 secondary phases. This, in turn, rationalizes the observation of peaks and plateaus in the conductivity of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号