共查询到20条相似文献,搜索用时 15 毫秒
1.
Soon Ok Jeon 《Journal of luminescence》2011,131(8):1621-1624
High efficiency blue phosphorescent organic light-emitting diodes were fabricated without an electron transport layer using a spirobifluorene based blue triplet host material. The simple blue PHOLEDs without the electron transport layer showed a high external quantum efficiency and current efficiency of 16.1% and 30.2 cd/A, respectively. The high device performances of the electron transport layer free blue PHOLEDs were comparable to those of blue PHOLEDs with the electron transport layer. 相似文献
2.
Soon Ok Jeon 《Journal of luminescence》2010,130(11):2238-2241
Deep blue phosphorescent organic light-emitting diodes (PHOLEDs) were developed using a 9-ethylcarbazole based phosphine oxide material (EPO1). A high triplet energy of 3.01 eV was obtained from the EPO1 host material and efficient energy transfer from the host to the deep blue emitting phosphorescent dopant was observed. A high quantum efficiency of 7.9% with a color coordinate of (0.15, 0.17) was achieved in the deep blue PHOLED using the EPO1 host material. 相似文献
3.
Sang Eok Jang 《Journal of luminescence》2010,130(11):2184-2187
Red phosphorescent organic light-emitting diodes (PHOLEDs) with stable efficiency roll-off were developed using a spirofluorene-benzofluorene based carbazole type host material. 9-(Spiro[benzo[c]fluorene-7,9′-fluorene]-2′-yl)-9H-carbazole with a spiro[benzofluorene-7,9′-fluorene] and a carbazole unit was synthesized and it was used as the host material for the red PHOLED. The quantum efficiency of the red PHOLED was optimized at a doping concentration of 1% and the efficiency decrease at 10,000 cd/m2 from the maximum efficiency was less than 10%. 相似文献
4.
We report highly efficient all phosphorescent white organic light-emitting diodes (OLEDs) with an exciton-confinement structure. By stacking two emissive layers (EMLs) with different charge transporting properties, effective charges as well as exciton confinements were achieved. Accordingly, efficient blue OLEDs with a peak external quantum efficiency (EQE) over 22% and power efficacy (PE) over 50 lm/W were developed by using iridium(III) bis(4,6-(difluorophenyl) pyridinato-N,C2′)picolinate (FIrpic) as an electro-phosphorescent dopant. When the optimized orange and red EMLs were sandwiched between the stacked two blue EMLs, white OLEDs with an EQE and PE of 24.3% and 45.9 lm/W at a luminance of 1000 cd/m2 were obtained without the use of any out-coupling techniques. In addition, these white OLEDs exhibit a color rendering index (CRI) value of 84 with high efficacy. 相似文献
5.
基于一种将具有电荷传输性的双极性主体材料与蓝、黄光客体材料共蒸的单层结构的同质结结构,制备了色温可调的白光有机电致发光器件(OLED)。由于不存在激子阻挡层,单层结构容易发生漏电流现象,致使OLED器件具有较高的工作电压和较低的电流/功率效率。在空穴/电子传输层进行p/n型掺杂的同质结结构则大大改善了器件性能。研究表明: 该种器件结构获得了相对较低的起压5.6 V,较高的电流效率2.64 cd/A和低效率滚降,其色坐标则随着亮度的增加沿着普朗克轨迹变化,产生类似于太阳光的发光特性。另外,对主体材料和共蒸层的电荷载流子的传输特性和复合机制也进行了一系列分析研究。 相似文献
6.
This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m2 when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m2 is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied. 相似文献
7.
Kyoung Soo Yook 《Journal of luminescence》2009,129(3):300-302
Quantum efficiency of red organic light-emitting diodes was improved using a blue phosphorescent emitting layer as an exciton blocking layer. Compared with 8.1% quantum efficiency of standard devices without an exciton blocking layer, high quantum efficiency of 14.1% was obtained using a blue phosphorescent emitting layer between the hole transport layer and the red emitting layer. 相似文献
8.
Color tunable microcavity organic light-emitting diodes (OLEDs) with structure of distributed Bragg reflectors (DBR)/indium-tin-oxide
(ITO)/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB)/tris(8-hydroxyquinoline) aluminum (Alq3)/LiF/Al were fabricated. Orange red and green light emissions with full width at half maximum (FWHM) of less than 20 nm were
obtained through simply changing the thickness of NPB layer. Furthermore, due to the effective modification of the spontaneous
emission within microcavity, the brightness and electroluminescent (EL) efficiency of the microcavity OLEDs were significantly
enhanced. The maximum brightness and current efficiency, respectively, reached 31000 cd/m2 at a current density of 480.0 mA/cm2 and 8.3 cd/A at a current density of 110.0 mA/cm2 for green devices, and 9700 cd/m2 at a current density of 180.0 mA/cm2 and 6.6 cd/A at a current density of 36.4 mA/cm2 for red devices, which are over 1.5 times higher than those of noncavity OLEDs.
相似文献
9.
建立了在单层有机发光二极管中电场强度不太大(E≤104Vcm)的情况下,载流子注入、传输和复合的理论模型.通过求解非线性Painleve方程得出了电场强度随坐标变化的解析函数关系式以及电流密度随电压变化关系,给出了电流密度以及器件的复合效率在不同的载流子迁移率情况下随电压变化关系图像.结果表明,复合效率受载流子迁移率影响较大,在器件中多数载流子应具有较低的迁移率,而少数载流子应具有较高的迁移率,这样有利于载流子的注入和传输,从而可提高发光效率.并且得出当空穴迁移率大于电子迁移率时,复合区域偏向阴极,反之亦
关键词:
单层有机发光二极管
复合效率
迁移率 相似文献
10.
Pure blue and white light electroluminescence in a multilayer organic light-emitting diode using a new blue emitter 下载免费PDF全文
We characterized the 6,12-bis{[N-(3,4-dimethylphenyl)-N-(2,4,5-trimethylphenyl)]amino} chrysene (BmPAC), which has been proven to be a blue fluorescent emission with high EL efficiency. The blue fluorescent device exhibits good performance with an external quantum efficiency of 5.8% and current efficiency of 8.9 cd/A, respectively. Using BmPAC, we also demonstrate a hybrid phosphorescence/fluorescence white organic light-emitting device (WOLED) with high efficiency of 36.3 cd/A. In order to improve the relative intensity of blue light, we plus a blue light-emitting layer (BEML) in front of the orange light emitting layer (YEML) to take advantage of the excess singlet excitons. With the new emitting layer of BEML/YEML/BEML, we demonstrate the fluorescence/phosphorescence/fluorescence WOLED exhibits good performance with a current efficiency of 47 cd/A and an enhanced relative intensity of blue light. 相似文献
11.
Jianzhuo Zhu Wenlian Li Bei Chu Fei Yan Dongfang Yang Huihui Liu Junbo Wang 《Journal of luminescence》2010,130(5):865-868
We demonstrate a non-doped white organic light-emitting diode (WOLED) in which the blue-, green- and red-emissions are generated from 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl, tris(8-hydroxyquinoline)aluminum (Alq) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyl-julolidyl 9-enyl)-4H-pyran (DCJTB), which is used as an ultrathin layer. The DCJTB ultrathin layer plays the chromaticity tuning role in optimizing the white spectral band by modulating the location of the DCJTB ultrathin layer in the green emissive Alq layer. The optimized WOLED gives the Commission Internationale de l’Eclairage-1931 xy coordinates of (0.319, 0.335), a color rendering index of 91.2 at 10 V, a maximum brightness of 21010 cd/m2 at 12 V and a maximum current efficiency of 5.17 cd/A at 6.6 V. The electroluminescence mechanism of the white device is also discussed. 相似文献
12.
《Current Applied Physics》2015,15(1):42-47
We demonstrate as much as possible blue color and high efficiency phosphorescent organic light-emitting diodes (PHOLEDs) by using well-known iridium(III)bis[(3,5-difluoro-4-cyanophenyl)-pyridinato-N,C′]picolinate (FCNIrpic) dopant and previously reported good host materials. For the control of blue color and efficiency, various host materials, 1,3-bis(carbazole-9-yl)benzene (mCP), 9-(3-(9H-carbazole-9-yl)phenyl)-3-(dibromophenylphosphoryl)-9H-carbazole (mCPPO1), and 2,8-di(9H-carbazol-9-yl)dibenzo[b,d]furan (DFCz), bis(4-(N-carbazole)phenyl)dimethylsilane (2MCBP) are selected and investigated their performances. A maximum external quantum efficiency (EQE) of 23.9% and power efficiency of 30.2 lm/W are achieved from 2MCBP device with Commision Internationale de L'Eclairage color coordinates (CIEx,y) of (0.14, 0.21). The deepest color with color coordinate of (0.14, 0.19) is obtained for the mCP device. 相似文献
13.
制备了结构为ITO/CuPc/NPB/Alq3/LiF/Al的常规有机发光二极管, 之后对器件采用波长为442 nm和325 nm的激光线进行照射产生激子, 并在小偏压下(保证器件没有开启)对激子的演化过程进行控制, 同时测量器件的光致磁电导(photo-induced magneto-conductance, PIMC). 实验发现, 不同于电注入产生激子的磁电导效应, PIMC在正、反小偏压下表现出明显不同的磁响应结果. 当给器件加上正向小偏压时, 器件的PIMC在0-40 mT范围内迅速上升; 随着磁场的进一步增大, 该PIMC增加缓慢, 并逐渐趋于饱和. 反向小偏压时, 器件的PIMC随着磁场也是先迅速增大(0-40 mT), 但达到最大值后却又逐渐减小. 通过分析外加磁场对器件光生载流子微观过程的影响, 采用'电子-空穴对'模型和超精细相互作用理论对正向偏压下的PIMC进行了解释; 反向偏压下因各有机层的能级关系, 为激子与电荷相互作用提供了必要条件, 运用三重态激子与电荷的反应机制可以解释PIMC出现高场下降的实验现象. 相似文献
14.
本文采用多发光层结构,制备了高亮度下具有高发光效率,同时在较宽亮度范围内发光颜色稳定的白色磷光有机电致发光器件(WOLED).在对双发光层结构磷光OLEDs的发光机制和载流子传输过程进行系统研究的基础上,将两种磷光OLEDs的发光层结构相结合,获得的多发光层结构磷光WOLED最大电流效率和外量子效率分别为34.6 cd/A和13.5%;当亮度为1000 cd/m^2时,其电流效率和外量子效率分别为33.9 cd/A和13.3%,外量子效率滚降仅为1.5%;亮度从1000 cd/m^2增至10000 cd/m^2的过程中,其CIE色度坐标从(0.342,0.403)变化至(0.326,0.392),变化量ΔCIE为(0.016,0.011). 相似文献
15.
顶发射白光有机发光二极管(TEWOLED)在白光照明和全彩显示中有着良好的应用前景, 克服顶发射器件中的微腔效应是制备光电性能良好的TEWOLED的前提. 使用具有高折射率的ZnS作为增透膜改善金属阴极在蓝光波段的透射率,降低其反射性, 从而有效抑制了微腔的影响.同时利用转移矩阵理论和宽角干涉方法分别对阴极结构和 蓝光发光层位置进行了优化,最终获得了高效、色纯度良好、色度随视角变化小的TEWOLED. 最高亮度和效率分别达到9213 cd/m2和3 cd/A,色坐标位于白光区且接近白光等能点, 同时具有良好的视角稳定性,在0°---60°范围内色坐标仅变化(0.02, 0). 相似文献
16.
Interlayer-free phosphorescent white organic light-emitting diodes (PHWOLEDs) with a mixed-host emitting structure in red emitting layer were developed and device performances were investigated according to the host composition in the red emitting layer. Device performances could be effectively managed by a simple change of host materials in the red emitting layer. A high quantum efficiency was obtained in PHWOLEDs with electron transport-type host in the red emitting layer and red emission was strong in PHWOLEDs with mixed-host in the red emitting layer. In addition, stable color performances were obtained in electron transport-type host rich devices. 相似文献
17.
Dependence of charge trapping of fluorescent and phosphorescent dopants in organic light-emitting diodes on the dye species and current density 下载免费PDF全文
This paper utilizes multilayer organic light-emitting
diodes with a thin layer of dye molecules to study the mechanism of
charge trapping under different electric regimes. It demonstrates
that the carrier trapping was independent of the current density in
devices using fluorescent material as the emitting molecule while this
process was exactly opposite when phosphorescent material was used.
The triplet--triplet annihilation and dissociation of excitons into
free charge carriers was considered to contribute to the decrease in
phosphorescent emission under high electric fields. Moreover, the
fluorescent dye molecule with a lower energy gap and ionized
potential than the host emitter was observed to facilitate the
carrier trapping mechanism, and it would produce photon emission. 相似文献
18.
Solution-processed p-doped hole-transport layer and its application in organic light-emitting diodes
We investigate p-type doping poly(9-vinylcarbazole) (PVK) hole-transport layer (HTL) with tetrafluoro-tetracyano-quinodimethane introduced via cosolution. We found that the performances of devices with doped HTLs are significantly improved. The efficiency and lifetime of the p-doped device are 2.3 and 3.7 times as large as that of the control device with pure PVK as a HTL. Furthermore, the turn-on voltage of the device is reduced from 9.5 to 3.6 V by using a p-doped HTL. These improved properties are attributed to the formation of the charge-transfer complex in the HTL, which increases hole injection and conductivity of p-doped films considerably. 相似文献
19.
High-efficiency organic light-emitting diodes based on ultrathin blue phosphorescent modification layer 下载免费PDF全文
Yellow organic light-emitting devices(YOLEDs) with a novel structure of ITO/MoO_3(5 nm)/NPB(40 nm)/TCTA(15 nm)/CBP:(tbt)_2Ir(acac)(x%)(25 nm)/FIrpic(y nm)/TPBi(35 nm)/Mg:Ag are fabricated. The ultrathin blue phosphorescent bis[(4,6-difluorophenyl)-pyridi-nato-N,C2■](picolinate) iridium(Ⅲ)(FIrpic) layer is regarded as a highperformance modification layer. By adjusting the thickness of FIrpic and the concentration of (tbt)_2Ir(acac), a YOLED achieves a high luminance of 41618 cd/m~2, power efficiency of 49.7 lm/W, current efficiency of 67.3 cd/A, external quantum efficiency(EQE) of 18%, and a low efficiency roll-off at high luminance. The results show that phosphorescent material of FIrpic plays a significant role in improving YOLED performance. The ultrathin FIrpic modification layer blocks excitons in EML. In the meantime, the high triplet energy of FIrpic(2.75 eV) alleviates the exciton energy transport from EML to FIrpic. 相似文献
20.
This work investigates how the thickness of the hole injection layer (HIL) influences the luminescent characteristics of white organic light-emitting diodes (WOLED). Experimental results indicate that inserting a thin HIL (<200 Å) into a WOLED without an HIL reduces the brightness and clearly changes the chromaticity because the surface of the 4,4′,4″-tris{N,-(3-methylphenyl)-N-phenylamino}-triphenylamine) (m-MTDATA) film is extremely rough. In contrast, a dense film structure and the fine surface morphology of m-MTDATA of moderate thickness (350-650 Å) provides a uniform conducting path on which holes cross the indium tin oxide (ITO)/HIL interface, improving luminescent performance, associated with the relatively stable purity of the color of the emission, with Commission Internationale 1′Eclairage (CIE) coordinates of (x = 0.40, y = 0.40). However, inserting a thick HIL (>650 Å) reduces the luminescent performance and causes red-shift, because the holes and electrons in the effective emissive confinement region become less optimally balanced. Moreover, optimizing the device structure enables a bright WOLED with CIE coordinates of (x = 0.34, y = 0.33) to reach a luminance of 7685 cd/m2 at a current density of 100 mA/cm2, with a maximum luminous efficiency of 1.72 lm/W at 5.5 V. 相似文献