首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

2.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

3.
A series of phosphors with the composition Y3−xMnxAl5−xSixO12 (x=0, 0.025, 0.050, 0.075, 0.150, 0.225, 0.300) were prepared with solid state reactions. The X-ray powder diffraction analysis of samples shows that the substitution of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance decrease to a certain extent. The emission spectra show that Mn2+ in Y3Al5O12 emits yellow-orange light in a broad band. With the increment of substitution content, the emission intensity of the phosphors increases firstly then decreases subsequently, and the emission peak moves to longer wavelength. Afterglow spectra and decay curves show that all the Mn2+ and Si4+ co-doped samples emit yellow-orange light with long afterglow after the irradiation of ultraviolet light. The longest afterglow time is 18 min. Thermoluminescence measurement shows that there exist two kinds of traps with different depth of energy level and their depth decreases with the increment of substitution content.  相似文献   

4.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

5.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

6.
In the present paper, phosphors with the composition Y3−x−yAl5O12:Bi3+x, Dy3+y were synthesized with solid state reactions. The luminescence properties of Bi3+ and Dy3+ in Y3Al5O12(YAG) and the energy transfer from Bi3+ to Dy3+ were investigated in detail. Bi3+ in YAG emits one broad band peaking at 304 nm which can be ascribed to the transition from excited states 3P0, 1 to ground state 1S0. Dy3+ in YAG emits two groups of peaks around 484 and 583 nm, respectively, which can be ascribed to the transitions from excited state 4F9/2 to ground states 6H15/2 and 6H13/2. The co-doping of Bi3+ enhances the luminescent intensity of Dy3+ by ∼7 times because Bi3+ can transfer the absorbed energy to Dy3+ efficiently. The mechanism of energy transfer was also discussed.  相似文献   

7.
Nanocrystalline Y3Al5O12: Ce3+/Tb3+ (average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores (average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1–3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/Tb3+ particles show strong yellow-green and green emission corresponding to the 5d–4f emission of Ce3+ and 5D47F J (J = 6, 5, 4, 3) emission of Tb3+, respectively. These phosphors may have potential application in field emission displays.  相似文献   

8.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

9.
This study reports an approach for enhancing the luminescent properties of Y3Al5O12: Ce3+0.07 using an organic compound precursor. The Y3Al5O12: Ce3+0.07 nano-sized phosphors had a relatively uniform particle size, approximately 50-80 nm, when sintered at 1200 °C for 1 h. The photoluminescence results showed the maximum peak intensity when the concentration of Ce3+ ions was 0.07 mol. The results suggest that nano-sized phosphors synthesized from organic compound precursors can be used as alternative efficiency emitting phosphors in the LED applications.  相似文献   

10.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

11.
Jidi Liu  Xue Yu  Jie Li 《Journal of luminescence》2010,130(11):2171-2174
A series of green phosphors Zn1.92−2xYxLixSiO4:0.08Mn2+ (0≤x≤0.03) were prepared by solid-state synthesis method. Phase and lattice parameters of the synthesized phosphors were characterized by powder X-ray diffractometer (XRD) and the co-doped effects of Y3+/Li+ upon emission intensity and decay time were investigated under 147 nm excitation. The results indicate that the co-doping of Y3+/Li+ has favorable influence on the photoluminescence properties of Zn2SiO4:Mn2+, and the optimal photoluminescence intensity of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 103% of that of commercial phosphor when the doping concentration of Y3+/Li+ is 0.01 mol. Additionally, the decay time of phosphor is much shortened and the decay time of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 3.39 ms, shorter by 1.83 ms than that of commercial product after Y3+/Li+ co-doping.  相似文献   

12.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

13.
符史流  柴飞  陈洁  张汉焱 《物理学报》2008,57(5):3254-3259
利用高温固相反应法制备了Ca2Sn1-xCexO4和Ca2-ySrySn1-xCexO4一维结构发光体. XPS结果显示 Ca2SnO4拥有两种结合能分别为5277 eV和5293 关键词: 2Sn1-xCexO4')" href="#">Ca2Sn1-xCexO4 2-ySrySn1-xCexO4')" href="#">Ca2-ySrySn1-xCexO4 一维结构 电荷迁移光谱  相似文献   

14.
Cool white light was realized in Y2−xy Gd x SiO5: Ce y phosphor under near UV excitation, due to the occupation Ce3+ in Y3+ 1st and 2nd site, synthesized using solid state carbothermal reduction route. SEM with elemental analysis show the existence of Gd in Y2SiO5:Ce enhances the particles size in comparison to Y2SiO5:Ce phosphors alone. Gd3+ (0.00≤x≤0.75) and Ce3+ (0.02≤y≤0.10) concentration was optimized to 0.50 and 0.08 in Y2SiO5, respectively. The CIE chromaticity color coordinates (0.24, 0.20) are close to cool white light value which could be useful for the fabrication of cool white LED.  相似文献   

15.
The effects of the excitation wavelength, Ce3+ concentration and chemical substitution on the thermal quenching of Y3Al5O12:Ce3+ (YAG:Ce3+) phosphors were investigated over a temperature range from 30 to 250 °C. The quenching behavior exhibits a complex dependence on the excitation wavelength and Ce3+ concentration, which can be attributed to temperature-dependent absorption strength of the different f-d absorption bands and thermally activated concentration quenching with or without energy migrations between Ce3+ ions, respectively. With increasing Lu3+content the luminescence of (Y, Lu)3Al5O12:Ce3+ phosphors shows a pronounced blueshift, and simultaneously the temperature quenching is obviously improved due to a decrease in Stokes shift.  相似文献   

16.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D23H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property.  相似文献   

17.
A red-emitting phosphor material, Gd2Ti2O7:Eu3+, V4+, by added vanadium ions is synthesized using the sol-gel method. Phosphor characterization by high-resolution transmission electron microscopy shows that the phosphor possesses a good crystalline structure, while scanning electron microscopy reveals a uniform phosphor particle size in the range of 230-270 nm. X-ray photon electron spectrum analysis demonstrates that the V4+ ion promotes an electron dipole transition of Gd2Ti2O7:Eu3+ phosphors, causing a new red-emitting phenomenon, and CIE value shifts to x=0.63, y=0.34 (a purer red region) from x=0.57, y=0.33 (CIE of Gd2Ti2O7:Eu3+). The optimal composition of the novel red-emitting phosphor is about 26% of V4+ ions while the material is calcinated at 800  °C. The results of electroluminescent property of the material by field emission experiment by CNT-contained cathode agreed well with that of photoluminescent analysis.  相似文献   

18.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

19.
Single-phased polycrystalline Y3Fe5−2xAlxCrxO12 garnet samples (x=0, 0.2, 0.4 and 0.6) have been prepared by the conventional ceramic technique. Rietveld refinement of X-ray diffraction patterns of the samples shows them to crystallize in the Ia3d space group and the corresponding lattice constant to decrease with increasing Al3+ and Cr3+ contents (x). Mössbauer results indicate that Cr3+ substitutes for Fe3+ at the octahedral sites whilst Al3+ essentially replaces Fe3+ at the tetrahedral sites. This result indicates that co-doping of Y3Fe5O12 does not affect the preferential site occupancy for separate individual substitution of either Cr3+ or Al3+. The magnetization measurements reveal that the Curie temperature (Tc) monotonically decreases with increasing x while the magnetic moment per unit formula decreases up to x=0.4 and then slightly increases for x=0.6. This reflects a progressive weakening of the ferrimagnetic exchange interaction between the Fe3+ ions at octahedral and tetrahedral sites due to co-substitution. The magnetic moment was calculated using the cations distribution inferred from the Mössbauer data and the collinear ferrimagnetic model, and was found to agree reasonably with the experimentally measured value. The phenomenological amplitude crossover, characterized by the temperature T*, has also been observed in the doped YIG and briefly discussed.  相似文献   

20.
The photoluminescence properties of Y1−x(PO3)3:xEu3+ (0<x≤0.2) are investigated. The excitation spectrum of Y0.85(PO3)3:0.15Eu3+ shows that both the (PO3)33− groups and the CT bands of O2−-Y3+ can efficiently absorb the excitation energy in the region of 120-250 nm. Under 147 nm excitation, the optimal emissive intensity of Y1−x(PO3)3:xEu3+ (0<x≤0.2) is about 36% of the commercial phosphor (Y,Gd)BO3:Eu3+, which hints that the absorbed energy by the host matrix could be efficiently transferred to Eu3+. We try to study the concentration quenching mechanism of Y1−x(PO3)3:xEu3+ (0<x≤0.2) under 147 and 172 nm excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号