首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
An investigation of the nonlinear optical rectification of a hydrogenic impurity, which is in a two-dimensional disc-like quantum dot (QD) with parabolic confinement potential, has been performed by using the perturbation method in the effective mass approximation. Both the electric field and the confinement effects on the energy are investigated in detail. The results are presented as a function of the incident photon energy for the different values of the confinement strength and the electric field. It is found that the nonlinear optical properties of hydrogenic impurity states in a disc-like QD are strongly affected by the confinement strength and the electric field.  相似文献   

2.
A detailed investigation of the nonlinear optical properties of the (D+X) complex in a disc-like quantum dot (QD) with the parabolic confinement, under applied magnetic field, has been carried by using the perturbation method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. The competition between the confinement and correlation effects on the one hand, and the magnetic field effects on the other hand, is also discussed. The results show that the confinement strength of QDs and the intensity of the illumination have drastic effects on the nonlinear optical properties. In addition, we note that the absorption coefficients of an exciton in QDs depend strongly on the impurity but weakly on the magnetic field. Furthermore, the light and heavy hole excitons should be taken into account when we study the optical properties of an exciton in a disc-like QD.  相似文献   

3.
In the present work, we investigate the nonlinear optical properties emerged from excitonic features in an experimentally realized spherical parabolic semiconductor quantum dot (QD). The lowest exciton states together with relevant wave functions are calculated through the expansion method with direct matrix diagonalization method within the effective mass approximation. The effect of the size of QD and confinement potential in exciton state is studied in details. Results show that with increasing the size of the QD the energy of exciton decreases because of decreasing of the effect of coulomb potential. Using the compact density matrix formalism second order nonlinear optical rectification (χ(2)χ(2)) are obtained. By means of the applied electric and magnetic field we manipulate the exciton states and control the nonlinear optical response in a typical GaAs, InAs, CdSe QDs. Our model system presents a way to control the performance of excitonic optoelectronic devices based on semiconductor nanostructures.  相似文献   

4.
An exciton in a disc-like quantum dot (QD) with the parabolic confinement, under applied electric field, is studied within the framework of the effective-mass approximation. Both the electric field and the confinement effects on the transition energy and the oscillator strength were investigated. Based on the computed energies and wave functions, the linear, the third-order nonlinear and the total optical absorption coefficients were also calculated. We found that the optical absorption coefficients with considering excitonic effects are stronger than those without considering excitonic effects and the absorption peak will move to the right side induced by the electron-hole interaction, which shows an excitonic effect blue-shift of the resonance in QDs. The applied electric field may affect either the size or the position of absorption peaks of excitons. However, the applied electric field may only affect the size of absorption peaks of an electron-hole pair without considering excitonic effects. It is very important to take excitonic effects into account when we study the optical absorption for disc-like QDs. We may observe the excitonic effect induced by the external electric field.  相似文献   

5.
Within the framework of the effective-mass approximation, the exciton states confined in wurtzite ZnO/MgZnO quantum dot (QD) are calculated using a variational procedure, including three-dimensional confinement of carriers in the QD and the strong built-in electric field effect due to the piezoelectricity and spontaneous polarizations. The exciton binding energy and the electron-hole recombination rate as functions of the height (or radius) of the QD are studied. Numerical results show that the strong built-in electric field leads to a remarkable electron-hole spatial separation, and this effect has a significant influence on the exciton states and optical properties of wurtzite ZnO/MgZnO QD.  相似文献   

6.
External electric field effects on the optical rectification coefficient of an exciton confined in a spherical parabolic quantum dot are theoretically investigated. To this end, energy eigenvalues and eigenfunctions of the system are calculated, using the direct matrix diagonalization method. The compact-density matrix approach and an iterative method are used to find the optical rectification coefficient of a typical GaAs parabolic quantum dot. The results show that the optical rectification coefficient strongly depends on the confinement frequency and the magnitude of the electric field. Moreover, the peak value of this optical quantity is shifted to the aspect of high energy when the influence of the electric field is considered.  相似文献   

7.
Using exact diagonalization techniques, the low-lying states of an exciton, and the linear and nonlinear optical absorptions in a disc-like quantum dot are theoretically studied. The numerical results for the typical GaAs material show the so-called quantum size effect. Also, our study is restricted on the transition between the S state (L = 0) and the P state (L = 1). The optical absorption coefficients are greatly enhanced because of the induced size confinement. Meantime, we find that the total optical absorption coefficient is about two times bigger than that obtained by without considering exciton effects. Additionally, the optical absorption saturation intensity can be controlled by the incident optical intensity I.  相似文献   

8.
Considering the strong built-in electric field (BEF), dielectric-constant mismatch and 3D confinement of the electron and hole, the exciton states and interband optical transitions in [0 0 0 1]-oriented Ga-rich wurtzite InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated theoretically using a variational approach under the effective mass approximation. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the radiative decay time. Our calculations show that the radiative decay time of the redshifted transitions is large and increases almost exponentially when the QD height increases, which is in good agreement with the previous experimental and theoretical results.  相似文献   

9.
Within the framework of the effective-mass approximation, the exciton states and interband optical transitions in InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated using a variational method, in which the important built-in electric field (BEF) effects, dielectric-constant mismatch and three-dimensional confinement of the electron and hole in InxGa1−xN QDs are considered. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the exciton oscillator strength.  相似文献   

10.
The effect of electric field on exciton states and optical properties in zinc-blende (ZB) InGaN/GaN quantum dot (QD) are investigated theoretically in the framework of effective-mass envelop function theory. Numerical results show that the electric field leads to a remarkable reduction of the ground-state exciton binding energy, interband transition energy, oscillator strength and linear optical susceptibility in InGaN/GaN QD. It is also found that the electric field effects on exciton states and optical properties are much more obvious in QD with large size. Moreover, the ground-state exciton binding energy and oscillator strength are more sensitive to the variation of indium composition in InGaN/GaN QD with small indium composition. Some numerical results are in agreement with the experimental measurements.  相似文献   

11.
Within the framework of the effective-mass and envelope function theory, exciton states and optical properties in wurtzite (WZ) InGaN/GaN quantum wells (QWs) are investigated theoretically considering the built-in electric field effects. Numerical results show that the built-in electric field, well width and in composition have obvious influences on exciton states and optical properties in WZ InGaN/GaN QWs. The built-in electric field caused by polarizations leads to a remarkable reduction of the ground-state exciton binding energy, the interband transition energy and the integrated absorption probability in WZ InGaN/GaN QWs with any well width and In composition. In particular, the integrated absorption probability is zero in WZ InGaN/GaN QWs with any In composition and well width L > 4 nm. In addition, the competition effects between quantum confinement and the built-in electric field (between quantum size and the built-in electric field) on exciton states and optical properties have also been investigated.  相似文献   

12.
In this paper, we studied the effects of an electric field on a hydrogenic impurity confined in a spherical parabolic quantum dot using nondegenerate and degenerate perturbation methods. The binding energies of the ground and three low-excited states are calculated as a function of the confinement strength and as a function of the intensity of an applied electric field. Moreover, we computed the oscillator strength and the second-order nonlinear optical rectification coefficient based on the computed energies and wave functions. The results show that the electric and optical properties of hydrogenic impurity states are strongly affected by the confinement strength and the applied electric field.  相似文献   

13.
Considering the three-dimensional confinement of the electrons and holes and the strong built-in electric field (BEF) in the wurtzite InGaN strained coupled quantum dots (QDs), the positively charged donor bound exciton states and interband optical transitions are investigated theoretically by means of a variational method. Our calculations indicate that the emission wavelengths sensitively depend on the donor position, the strong BEF, and the structure parameters of the QD system.  相似文献   

14.
We have performed theoretical calculation of second-order nonlinear optical rectification (OR) coefficient in a typical GaAs/AlGaAs QD with ellipsoidal confinement potential in the presence of an impurity and an applied electric field. Using an appropriate coordinate transformation and the perturbation theory, we have investigated the OR coefficient as a function of incident photon energy. Calculation results show that the values of OR coefficient increase with an increase of applied electric field. However, the values decrease with increases in confinement strength and ellipticity constant. Additionally, the presence of a donor impurity shifts the OR coefficient peak positions to higher energies (blueshift), contrary to that of an acceptor impurity.  相似文献   

15.
Wenfang Xie 《Physics letters. A》2011,375(8):1213-1217
In this study, a detailed investigation of the nonlinear optical properties of the (D+,X) complex in a disc-like parabolic quantum dot has been carried out by using the matrix diagonalization method and the compact density-matrix approach. First, the numeric calculations and analysis of the oscillator strength of intersubband quantum transition from the ground state into the first excited state at the varying confinement frequency have been performed. Second, the linear, third-order nonlinear, and total absorption coefficients and refractive indices have been investigated. It is observed that the confinement frequency of QDs and the intensity of the illumination have drastic effects on the nonlinear optical properties. In addition, we find that all kinds of absorption coefficients and refractive indices of an exciton in QDs shift to lower energies and their peak values have considerably decreases induced by the impurity.  相似文献   

16.
In this paper, we studied the nonlinear optical properties of a negative donor center (D) in a disk-like quantum dot (QD) with a Gaussian confining potential. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A detailed investigation of the linear, third-order nonlinear, total optical absorptions and refractive index changes has been carried out for the D QD and the D0 QD. The linear, third-order nonlinear, total optical absorptions and refractive indices have been examined for a double-electron QD with and without impurity. Our results show that the optical absorption coefficients and refractive indices in a disk-like QD are much larger than their values for quantum wells and spherical QDs and the nonlinear optical properties of QDs are strongly affected not only with the confinement barrier height, dot radius, the number of electrons but also the electron-impurity interaction.  相似文献   

17.
An exciton in a spherical quantum dot is studied analytically within the effective mass approximation. A parabolic confinement under an electric field is considered. The linear and nonlinear optical absorption coefficients are calculated within the density matrix formalism. No assumptions are made about the strength of the confinement. It is shown how the competing mechanisms of the Coulomb interaction, the confinement and the applied static electric field affect the optical absorption.  相似文献   

18.
The effect of electric field on the binding energy, interband emission energy and the non-linear optical properties of exciton as a function of dot radius in an InSb/InGaxSb1?x quantum dot are investigated. Numerical calculations are carried out using single band effective mass approximation variationally to compute the exciton binding energy and optical properties are obtained using the compact density matrix approach. The dependence of the nonlinear optical processes on the dot sizes is investigated for various electric field strength. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of electric field induced exciton as a function of photon energy are obtained. It is found that electric field and the geometrical confinement have great influence on the optical properties of dots.  相似文献   

19.
Multiexcitons confined in InGaAs/GaAs quantum dots (QDs) with a lateral size slightly exceeding the exciton Bohr radius are investigated by magnetophotoluminescence spectroscopy at 2 K. The Coulomb correlations in the two-exciton complex result in an additional confinement, which increases with decreasing dot size, while a magnetic field reduces this effect. A three-exciton complex is confined only by the geometric confinement potential of the QD. The exciton-exciton repulsion increases with decreasing dot size, while a magnetic field decreases the repulsion strongly when the magnetic length becomes smaller than the lateral size of the QD. A shell model for the QD multiexciton states is proposed. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 263–268 (25 August 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

20.
CdTe nanocrystals were grown from commercially available RG850 Schott filter glass by two-step heat-treatment process which almost doubles the particle to matrix volume fraction. A calculation shows that a quantized-state effective mass model in the strong confinement regime might be used to deduce the average radius for the nanocrystals larger than 2 nm in radius from the energetic position of the first exciton peak in optical absorption spectrum. Size-induced shift of ∼360 meV in the first exciton peak position was observed. The steady state photoluminescence spectra exhibit a broad band red shifted relative to the first exciton band, which indicates the existence of shallow trap states. The non-linear optical properties of CdTe nanocrystals were studied by room temperature resonant photoabsorption spectroscopy. The differential absorption spectra had three-lobed structure whose size-dependent evolution was explained by bleaching of the absorption, red shift and broadening in the Gaussian absorption band used to fit the first exciton peak. A maximum red shift of 2.32 meV for the average nanocrystal radius of 4.65 nm was estimated by fitting the photomodulation spectra with a combination of first and second derivative Gaussian absorption bands. We presume that the red shift is induced by the electric field of trapped charges in surface states. Internal electric field strengths of 23 and 65 kV/cm were predicted for the average nanocrystal radii of 3.95 and 4.65 nm, respectively, with the help of second-order perturbation theory in the strong confinement limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号