首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YVO4:Eu, and YVO4:Eu/SiO2 nanocrystals (NCs) were prepared by hydrothermal method with citrate as capping ligands. Their morphologies, structures, components, and photoluminescence properties were investigated and presented in this paper. A remarkable fluorescence enhancement up to 2.17 times was observed in colloidal YVO4:Eu/SiO2 NCs, compared to that of colloidal YVO4:Eu NCs. This is mainly attributed to the formation of the outer protecting layers of biocompatible SiO2 shells; which shield the Eu3+ ions effectively from water and thus reduces the deleterious effects of water on the luminescence. Meanwhile, on the basis of laser selective excitation, two kinds of luminescent centers were confirmed in the NCs, namely, inner Eu3+ ions and surface Eu3+ ions. The surface modifications for YVO4:Eu NCs effectively reduced the surface defects and accordingly enhanced the luminescence. The core/shell NCs exhibited long fluorescence lifetime and high photostability under ultraviolet radiation.  相似文献   

2.
A series of different concentrations of Eu3+ and Dy3+ ions co-doping yttrium vanadate phosphors coated with Fe3O4 (YVO4:Eu3+, Dy3+@Fe3O4) was successful prepared by using two steps route including sol?Cgel method and hydrothermal method. The resulting phase formation, particle morphology, structure, luminescent, and magnetic properties were examined by X-ray diffraction, transmission electron microscopy, photoluminescence spectra, and vibrating sample magnetometer. The results indicate that the diameter of the YVO4:Eu3+, Dy3+@Fe3O4 nanocomposites is 100?C300?nm. The special saturation magnetization Ms of the nanocomposites is 53?emu/g. Additionally, the emission intensities of YVO4:Eu3+ or Dy3+ ions are regularly changed with the emission doping concentrations. After coating with Fe3O4, the variation of the luminescent intensity of YVO4:Eu3+, Dy3+@Fe3O4 magnetic phosphors is different.  相似文献   

3.
This work presents the influence of europium dopant on optical properties of Sr2SnO4:Eu3+ powders fabricated by a facile low temperature method. Powders were obtained from the same amounts of Eu3+ doping into the different concentrations of Sr(NO3)2. Powders were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). SEM measurements different Eu concentrations in fabricated powders was determined to found different morphologies. XRD analysis revealed the existence of crystalline Sr2SnO4 in the form of tetragonal and the diffraction intensity was remarkably changed. PL studies showed a red luminescence of Sr2SnO4:Eu3+ powders. The intensity of luminescence increased with better crystallinity. This approach provides economically viable route for large-scale synthesis of this kind of nanopowders.  相似文献   

4.
A simple combustion route was employed for the preparation of Eu3+-doped MgAl1.8Y0.2−xO4 nanocrystals using metal nitrates as precursors and urea as a fuel in a preheated furnace at 500 °C. The powders thus obtained were then fired at 1000 °C for 3 h to get better luminescent properties. The incorporation of Eu3+ activator in these nanocrystals was checked by luminescence characteristics. These nanocrystals displayed bright red color on excitation under 254 nm UV source. The main emission peak was assigned to the transition [5D07F2] at 615 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were carried out to understand surface morphological features and the particle size. Crystal structures of the nanocrystals were investigated by the X-ray diffraction (XRD) technique. The crystallite size of the as-prepared nanocrystals was around 29 nm, which was evaluated from the broad XRD peaks. The crystallite size increased to ∼45 nm on further heat treatment at 1000 °C.  相似文献   

5.
In this Letter, 7F2 crystal field (CF) levels of surface Eu3+ in YVO4 nanocrystals are calculated employing a refined electrostatic point charge model, where surface states are simulated by point charges. Based on the theoretical 7F2 CF levels, emission spectra of YVO4: Eu3+ nanocrystals are assigned to Eu3+ under different local environments. and relaxation of selection rules by surface effect is discussed.  相似文献   

6.
Zn2SnO4:Eu3+ nanocrystals were one-step synthesized by hydrothermal method for the first time. All the products were systematically characterized by powder X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron probe X-ray microanalyzer (EPMA), photoluminescence (PL) and photoluminescent excitation (PLE). The characteristic peak of Eu3+-doped in Zn2SnO4 nanocrystals was also detected. The luminescent properties of blank and Eu3+-doped Zn2SnO4 nanocrystals were reported.  相似文献   

7.
The Y0.95?xAlxVO4:5%Eu3+ (0≤x≤0.1) phosphors were successfully synthesized by solid state reaction at 900 °C for 6 h, and their luminescence properties were investigated under UV and VUV excitation. Monitoring at 619 nm, a strong broad absorption was enhanced by co-doping of Al3+ into the YVO4:Eu3+ lattices at 256 nm under UV excitation. The VUV excitation spectra also showed the enhanced excitation bands at about 156 and 200 nm. Under 254 or 147 nm excitation, it was found that Y0.95?xAlxVO4:Eu3+(0≤x≤0.1) phosphors showed strong red emission at about 619 nm corresponding to the electric dipole 5D0–7F2 transition of Eu3+. The improvement of luminescence intensity of YVO4:Eu3+ was also observed after partial substituting Y3+ by Al3+ and the optimal luminescence intensity appeared with incorporation of 2.5 mol% Al3+.  相似文献   

8.
Although aluminate phosphors have attracted great interest for applications in lamps, cathode ray tubes and plasma display panels, there still remain issues affecting operational parameters such as luminescence efficiency, stability against temperature, high color purity and perfect decay time. In addition, issues involving important aspects of the monoclinic↔hexagonal phase transition temperature still exist. In this work, SrAlxOy:Eu2+,Dy3+ phosphor powders were prepared by the sol–gel method. X-ray diffraction (XRD) has shown that both crystallinity and crystallite sizes increased as the temperature increased. Both SrAl2O4 and Sr2Al3O6 phases were observed. Photoluminescence (PL) characterization shows temperature-dependence, which indicates emission at low and high annealing temperatures originating from Eu2+ and Eu3+ ions. Thermoluminescence glow and decay measurements provided useful insight on the influence of traps on luminescence behavior. Differential scanning calorimetry (DSC) and thermogravimetric studies (TGA) on composites of the phosphor in low density polyethylene (LDPE) demonstrated the varied influence of annealing temperature on some luminescence and thermal properties.  相似文献   

9.
In an effort to obtain enhanced luminescence under photoexcitation as well as to clarify the underlying correlation between non-radiative sites and a surface modifier in a nanoscale phosphor, YVO4:Eu3+ was synthesized via a polyethylene glycol (PEG)-assisted hydrothermal process. The temperature variable photoluminescence reveals that the overall emission behaviors of PEG-added YVO4:Eu3+ phosphor was similar to those of a post-annealed sample without PEG addition. This polymeric agent induces a rough thin layer onto the YVO4:Eu3+ nanoparticle during synthetic procedure, resulting in the prevention of surface-adsorbed species known as non-radiative sites such as NH4+ as well as hydroxyl groups.  相似文献   

10.
The OA-modified CaF2: Eu nanocrystals that can be well dispersed in chloroform to form a clear solution were synthesized and characterized. The nanocrystals have a roughly spherical shape with particle diameter of about 10 nm. Possible mechanism was proposed to explain the growth process. Upon the excitation at 395 nm, the room-temperature emission spectrum of the nanocrystals in chloroform presents the characteristic transitions 5D07FJ of Eu3+ ions, with 5D07F2 (610 nm) transition as the most prominent group. The luminescence decay of Eu3+ ions in CaF2 nanocrystals was also investigated and two luminescence lifetimes of 737 μs (11.2%) and 2.08 ms (88.8%) were obtained.  相似文献   

11.
A sol-gel technique emphasizing the Pechini process has been employed for the preparation of nano-crystal Eu3+-doped YVO4 phosphor. The precursor powders were heated at 800 °C for 3 h to obtain good crystallinity with better luminescence. XRD results indicate that the second phase is not presented when the Eu3+ ion concentration is increased up to 50 mol%. The absorption and photoluminescent (PL) studies indicated that the energy is absorbed first by the host and then transferred to the emitting level of the Eu3+ ions. Excitation at 318 nm in terms of Eu3+ concentrations in YVO4 powders shows that the YVO4 phosphors display bright red luminescence at about 618 nm belonging to the 5D07F2 electric dipole transition, and a weak band in the orange region of the 5D07F1 transition at 594 nm. In addition, the time-resolved 5D07F2 transition presents a single-exponential decay behavior, revealing the decay mechanism of the 5D07F2 transition is a single decay component between Eu3+ ions only. The saturation of the emission intensity excited by the CTS when the Eu3+ concentration is 10 mol%. The concentration quenching is active when the Eu3+ concentration is larger than 10 mol%, and the critical distance is about 5.75 Å.  相似文献   

12.
The luminescence properties of BaZr(BO3)2:5% Eu were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation and different luminescence behaviors were observed by different excitation energies. After the analyses of the luminescence spectra, the result indicates that Eu3+ occupying non-centrosymmetric sites Ba2+ can be excited preferentially under 254 nm excitation, while Eu3+ occupying centrosymmetric sites Zr4+ can be excited preferentially under 147 nm excitation.  相似文献   

13.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

14.
The MgO-Ga2O3-SiO2 glass-ceramic (GC) containing MgGa2O4 nanocrystals and glasses doped with Eu3+ ions were prepared by the sol-gel method. The down-conversion and up-conversion luminescence (UCL) properties were studied. The results indicated that the relative intensity of f-f transitions of Eu3+ decreased in contrast with that of charge transfer (CT) absorption with the increase in heating temperature. Using a Xe lamp and 800 nm femtosecond (fs) laser excitation, strong red luminescence of Eu3+ in MgO-Ga2O3-SiO2 glasses and GC was observed.  相似文献   

15.
Nanosized luminescent (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ were synthesized at low temperatures either by a coprecipitation method or by a hydrothermal method from aqueous solutions. The effect of Bi3+ ion or P5+ ion content in the lattice, annealing temperature effects on the crystal structure and the particle size, and the luminescence property of (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ nanoparticles were examined with a field-enhanced scanning electron microscopy, XRD, and a spectrofluorometer. The pristine YVO4:Eu3+, (Y,Bi)VO4:Eu3+, or Y(V,P)O4:Eu3+ nanoparticles are 35-50 nm in size. The luminescence spectrum of the Eu3+ ion was used to probe its position in the crystal lattice. The dopant ions enter the same lattice sites in the nanocrystalline as in the corresponding bulk material, resulting similar spectral features between them. Photoluminescence intensity is weak for the pristine nanoparticles. Annealing the nanoparticles at temperatures up to 1000 °C results in the increased luminescence intensity (>80% of micrometer-sized phosphors) with the minimal particle growth and the improved particle crystallinity.  相似文献   

16.
Alumina (Al2O3) powders doped with europium trivalent (Eu3+) were prepared by a low-temperature (∼280 °C) combustion synthesis technique. When the powder was heat treated at 1200 °C for 2 h in the presence of flowing ammonia (NH3), α-Al2O3 crystalline ceramic powders was obtained. The analysis of the luminescence showed that Eu3+ was reduced to europium divalent (Eu2+) after the heat-treatment process. Under ultraviolet (UV) lamp excitation (λ=254 nm) these powders containing sub-microcrystalline structures present bright red (Al2O3:Eu3+) and green (Al2O3:Eu2+) luminescence indicating that this material is a potential candidate for applications in phosphor technology.  相似文献   

17.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

18.
A nonhydrolytic hot solution synthesis technique was used to grow monodisperse ternary oxide nanocrystals of ZnGa2O4:Eu3+. The shape of ZnGa2O4:Eu3+ nanocrystals was a function of the type of precursor, and their size was controlled by changing the concentration ratio of Zn precursor to surfactant. The crystal structure of synthesized ZnGa2O4 nanocrystals was a cubic spinel with no detectable secondary phases. Photoluminescence of red-emitting ZnGa2O4:Eu3+ nanocrystals resulted in a high (5D0-7F2)/(5D0-7F1) intensity ratio, suggesting that the Eu3+ ions occupy tetrahedral Zn2+ sites or distorted octahedral Ga3+ sites with no inversion symmetry in ZnGa2O4 nanocrystals.  相似文献   

19.
Y2O3:Eu纳米晶中能量传递相互作用的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过浓度猝灭曲线确定了引起Y2O3纳米晶中Eu3+发光浓度猝灭的是交换相互作用.测量了两种颗粒尺寸下Eu3+5D07F2跃迁发光衰减曲线随掺杂浓度的变化,利用交换相互作用的理论衰减曲线对实验衰减曲线进行拟合.计算Eu3+离子的交换相互作用能量传递的效率,分析了Y2O3关键词: 能量传递 2O3Eu纳米晶')" href="#">Y2O3Eu纳米晶 发光衰减  相似文献   

20.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号