首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of disperse blue SBL (DBSBL) with bovine serum albumin (BSA) was investigated using fluorescence, UV-visible and far-UV circular dichroism (CD) spectroscopy. The results showed that the fluorescence of BSA was quenched by DBSBL through static quenching after correcting for the inner filter effects (IFE). The binding constant Kb of DBSBL with BSA at 288, 298 and 303 K were 0.116×106, 3.18×106 and 12.3×106 L mol−1, respectively. The thermodynamic parameters, standard enthalpy change (ΔH0) and standard entropy change (ΔS0), for the reaction were evaluated to be 227.2 kJ mol−1 and 886 J mol−1 K−1 according to the van’t Hoff equation. The above data suggested that the forces acting between DBSBL and BSA were predominantly hydrophobic interactions. The results of UV-visible absorption and far-UV CD spectroscopy also revealed that the conformation and microenvironment of BSA molecule were changed after DBSBL binding to BSA. At 288 K one binding site was present but at higher temperatures a second binding site was detected between DBSBL and the BSA molecule. The lower bound for the distance between the bound dye and the Trp residue is 2.35 nm as calculated from Forster energy transfer.  相似文献   

2.
In this paper, the toluidine blue (TB) with tricyclic quinone imide plane structure is used as sonosensitizer to study the interaction and sonodynamic damage to bovine serum albumin (BSA) by UV-vis and fluorescence spectroscopy. The results show that the TB can bind to BSA molecules, obviously, and the synergetic effects of TB and ultrasonic irradiation can efficiently damage the BSA molecules. Otherwise, some influencing factors such as ultrasonic irradiation time, TB concentration, pH value and ionic strength on the damage of BSA molecules were also considered by the numbers. Synchronous fluorescence spectroscopy indicates that the tyrosine (Tyr) residues of BSA molecules are damaged more seriously than the tryptophan (Trp) residues under ultrasonic irradiation.  相似文献   

3.
The interaction of methyl blue (MB) with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopy. The intrinsic fluorescence of HSA was quenched by MB, which was rationalized in terms of the static quenching mechanism. The number of binding sites and the apparent binding constants at different temperatures were obtained from the Stern-Volmer analysis of the fluorescence quenching data. The thermodynamic parameters determined by the van’t Hoff analysis of the binding constants (ΔH°=39.8 kJ mol−1 and ΔS°=239 J mol−1 K−1) clearly indicate that binding is absolutely entropy-driven and enthalpically disfavored The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (MB) were calculated as 60% and 2.06 nm from the Förster theory of non-radiation energy transfer.  相似文献   

4.
The binding properties on theasinesin to human serum albumin (HSA) have been studied for the first time using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results showed that theasinesin strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure, and non-radiation energy transfer happened within molecules. The number of binding site was 1, and the efficiency of Förster energy transfer provided a distance of 4.64 nm between tryptophan and theasinesin binding site. At 298, 310 and 323 K, the quenching constants of HSA–theasinesin system were 2.55×103, 2.16×103 and 1.75×103 mol L−1. ΔHθ, ΔSθ and ΔGθ were obtained based on the quenching constants and thermodynamic theory (ΔHθ<0, ΔSθ>0 and ΔGθ<0). These results indicated that hydrophobic and electrostatic interactions are the mainly binding forces in the theasinesin–HSA system. In addition, the results obtained from synchronous fluorescence spectra showed that the binding of theasinesin with HSA could induce conformational changes in HSA.  相似文献   

5.
The interactions of bovine serum albumin (BSA) with two local anesthetics, procaine hydrochloride (PCH) and tetracaine hydrochloride (TCH) were studied using spectroscopic methods such as fluorescence and ultraviolet visible (UV-vis), and electrochemical techniques including cyclic voltammetry (CV) and differential pulsed stripping voltammetry (DPSV). The results obtained from these techniques turned out that both PCH and TCH could bind to BSA. The binding constants (KA) and the number of binding sites (n) of the two drugs with BSA at different temperatures were determined, respectively. At 291 K, KA was found as 2.40×104 and 1.42×104 L mol−1 and n was 1.03 and 0.99 for PCH-BSA and TCH-BSA, respectively. According to van’t Hoff equation, the thermodynamic parameters, ΔG, ΔH and ΔS, were obtained, showing the involvement of hydrophobic and electrostatic force in these interactions. Based on the theory of the Förster energy transference, the distance between the acceptor (PCH or TCH) and the donor (BSA) were determined as 2.32 and 3.62 nm for PCH and TCH, respectively. The effects of Fe3+, Cu2+, Mg2+, Mn2+, Zn2+ and Ca2+ on the binding of PCH or TCH to BSA were also evaluated.  相似文献   

6.
The fluorescence and ultraviolet spectroscopies were explored to study the interaction between edaravone (EDA) and bovine serum albumin (BSA) under imitated physiological condition. The experimental results show that the fluorescence quenching mechanism between EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites, and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between EDA and BSA was calculated to be 3.10 nm. The effect of EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy. In addition, the effects of some common metal ions Mg2+, Ca2+, Cu2+, and Ni2+ on the binding constant between EDA and BSA were examined.  相似文献   

7.
Mechanism of interaction and detailed physico-chemical characterization of the binding of four fluoroquinolones: levofloxacin, sparfloxacin, ciprofloxacin HCl and enrofloxacin with human serum albumin has been studied at physiological pH (7.4) using fluorescence spectroscopic technique. The stoichiometry of interaction was found to be 1:1 for all the drugs used. The association constants for the interaction were of the order of 104 in most cases. At low drug:protein ratios, a significant fraction of the added drug was bound. The predominant interactions involved are hydrogen bonding and Van der Waal’s interactions in the case of levofloxacin, hydrophobic interactions in the case of ciprofloxacin hydrochloride and enrofloxacin and hydrogen bonding, hydrophobic and electrostatic interactions in the case of sparfloxacin.The drug binding region did not coincide with that of the hydrophobic probe, 1-anilinonaphthalene-8-sulfonate (ANS). From the displacement of site-specific probes and site-marker drugs, it was concluded that ciprofloxacin hydrochloride is site II-specific while enrofloxacin is a site I-specific drug. Levofloxacin binds at both site I and site II with equal affinity. Sparfloxacin had higher affinity for site II than site I. It is also possible that sparfloxacin binds at the interface between site I and site II. Stern-Volmer analysis of the data showed that the quenching mechanism is predominantly collisional for the binding of ciprofloxacin HCl and enrofloxacin while both static and collisional quenching mechanisms are operative in the case of levofloxacin and sparfloxacin. High magnitude of the rate constant for quenching showed that the process is not entirely diffusion controlled. Circular dichroism (CD) spectroscopic studies showed that the presence of drugs did not cause any major changes in the secondary structure of HSA.  相似文献   

8.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO2 (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (Ka) were 2.18±0.04×104, 0.87±0.05×104, 0.68±0.06×104 M−1 at 298, 304 and 310 K, respectively. In addition, according to the Van’t Hoff equation, the thermodynamic functions standard enthalpy (ΔH0) and standard entropy (ΔS0) for the reaction were calculated to be −75.18±0.15 kJ mol−1 and −170.11±0.38 J mol−1 K−1. These results indicated that TiO2 NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO2 NPs-HSA complex were discussed.  相似文献   

9.
In this paper, the interaction of neutral red (NR) with bovine serum albumin (BSA) and the sonodynamic damage to BSA under ultrasonic irradiation was studied by means of ultraviolet-visible (UV-vis) and fluorescence spectra. The quenching constant (KSV=5.749×104 L/mol), binding constant (KA=3.19×104 L/mol) and binding site number (n=0.9462) were measured. The binding distance (r=2.47 nm) between NR and BSA was obtained according to Föster’s non-radiative energy transfer theory. The damage process of BSA molecules was detected by the hyperchromic effect of UV-vis spectra and quenching of intrinsic fluorescence spectra. In addition, the influencing factors such as ultrasonic irradiation time and NR concentration on the damage to BSA molecules were also considered. The results showed that the damage degree is enhanced with the increase of ultrasonic irradiation time and NR concentration. The possible mechanism of sonodynamic damage to BSA molecules was mainly mediated by singlet oxygen (1O2). Otherwise, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. The results indicated that the NR is more vicinal to tryptophan (Trp) residue than to tyrosine (Tyr) residue and the damage site is also mainly at Trp residues. The research result will bring a certain significance to use sonosensitive drugs in the fields of tumor treatment.  相似文献   

10.
利用荧光光谱研究了三种异黄酮类化合物染料木素、鸡豆黄素A和3’,4’,7-三羟基异黄酮与不同异构体人血清白蛋白的相互作用机制。计算了异黄酮与蛋白质形成复合物的各种结合参数(猝灭速率常数、结合常数及结合位点数),结果表明三种异黄酮类化合物在人血清白蛋白上只有一个结合位点,位于结合位点siteⅠ,结合常数在0.17×105~1.20×105 L.mol-1之间。荧光增强光谱结果显示,与蛋白质作用后药物的荧光强度明显增加,说明了药物与人血清白蛋白发生了结合,在此基础上讨论了三种异黄酮与人血清白蛋白的结合机理。  相似文献   

11.
In this paper, the binding of trazodone hydrochloride (TZH) to bovine serum albumin (BSA) was investigated by spectroscopic (fluorescence, spectrophotometry and circular dichroism) techniques under simulative physiological conditions. A strong fluorescence quenching reaction of TZH to BSA was observed and the quenching mechanism was suggested as dynamic quenching according to the Stern-Volmer equation. The binding constants of TZH with BSA at 288, 302 and 309 K were calculated as (1.56±0.003)×104, (2.31±0.002)×104 and (5.44±0.004)×104 M−1, respectively. The thermodynamic parameters, ΔH0 and ΔS0 were obtained to be 39.86±0.008 kJ mol−1 and 217.89±0.011 J mol−1 K−1, respectively, which indicated the presence of hydrophobic forces between TZH and BSA. The spectral results observed showed that the binding of TZH to BSA induced conformational changes in BSA. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between donor (BSA) and acceptor (TZH) was found to be 2.4 nm. The effect of common ions on binding of TZH to BSA was also examined.  相似文献   

12.
在模拟生理条件下,用荧光光谱法研究了碳纳米管对牛血清白蛋白和加替沙星荧光光谱特性的影响以及有无碳纳米管共存时加替沙星对牛血清白蛋白荧光光谱特性的影响.实验结果表明,加替沙星和碳纳米管都可以使牛血清白蛋白的荧光强度发生静态猝灭.在碳纳米管的存在下,加替沙星与牛血清白蛋白的结合作用有所减弱.Stern-Volmer荧光猝灭...  相似文献   

13.
The mechanism of interaction of an antidepressant, fluoxetine hydrochloride (FLX) with bovine serum albumin (BSA) has been studied by different spectroscopic techniques under physiological conditions. FLX was found to quench the intrinsic fluorescence of protein by static quenching mechanism. The binding constant ‘K’ was found to be 7.06×103 M−1 at 296 K. The value of ‘n’ close to unity revealed that the BSA has a single class of binding site for FLX. Based on thermodynamic parameters, hydrogen bonding and van der Waals forces were proposed to operate between BSA and FLX. The change in conformation of protein was noticed upon its interaction with the drug. From displacement studies it was concluded that the FLX bound to protein at site I. The effects of various common metals ions on the binding were also investigated.  相似文献   

14.
The interaction between the antimicrobial drug sulfamethazine (STM) and bovine serum albumin (BSA) has been studied using steady state and synchronous fluorescence spectroscopy. Fluorescence emission data revealed that BSA (2×10−6 M) fluorescence was statically quenched by STM at various concentrations, which implies that STM-BSA complex has been formed. The fluorescence emission data was analyzed via applying the Stern-Volmer analysis in combination with thermodynamic investigation, where obtained results revealed that quenching is static with quenching constants of 2.371, 1.658, and 0.916×105 M−1 at 298, 304, and 310 K, respectively. Binding constants and number of binding sites at different temperatures were also determined by applying the Scatchard method, which in turn were used to construct the van't Hoff plot in order to estimate the enthalpy (ΔH) and entropy changes (ΔS) for the complexation process. An average of 1.00±0.17 was estimated for the number of sites of BSA, which indicated that STM binds to BSA with stoichiometric ratio of 1:1. The values that were estimated from the van't Hoff plot for ΔH and (ΔS) were −36.8 kJ mol−1 and −14.9 J mol−1 K−1, respectively, which indicate that the STM-BSA complex is stabilized with hydrogen bonds and van der Waals interactions. Synchronous fluorescence data was obtained at Δλ of 15 and 60 nm, where obtained results confirmed that STM binds to BSA at the tryptophan residue (Trp. 213). In addition, the distance between STM and the Trp. 213 was estimated via employing the Förster's non-radiative energy-transfer theory, and was found to be 2.73 nm, which in turn indicated that STM can bind to BSA with high probability.  相似文献   

15.
The N-terminal region of human serum albumin (HSA) has an inherent affinity for Co(II) ions. On this basis a new continuous flow method for detection of HSA has been developed taking advantage of the strong quenching effect of the albumin in the ninhydrin-H2O2-Co(II) chemiluminescent system. The analytical potential of the system is compared with other conventional chemiluminescent reagents. The method gives linear responses from the detection limit (0.30 μM HSA) up to 6.8 μM. The repeatability of the method is good (RSD=7%), it is cheap and rapid to apply and does not require the use of insoluble or expensive reagents nor sophisticated equipment.  相似文献   

16.
We have used electronic absorption and fluorescence spectroscopy to study binding between a platinum(II) dimethylsulfoxide complex (cis-[Pt(DMSO)2Cl2]) and human serum albumin (HSA), and the effect of complexation on the structure of the protein. We have calculated the binding parameters for binding between cis-[Pt(DMSO)2Cl2] and HSA. We have determined the binding constant KB = (1.2 ± 0.1)·103 M−1 and the Hill coefficient h = 1.03 ± 0.1. We have determined that binding between cis-[Pt(DMSO)2Cl2] and the protein leads to a change in the internal packing of the macromolecule. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 4, pp. 573–576, July–August, 2008.  相似文献   

17.
丹酚酸B(SAB)是丹参中主要的水溶性成分之一,具有广泛的生物活性.血清白蛋白是哺乳动物体内血浆中含量最为丰富的蛋白质,约占血浆总蛋白的60%,能与许多内源及外源性物质相结合,发挥存储和转运的作用.丹酚酸B进入人体后,必然先与血液中的蛋白质相结合,然后才被转运到其受体结合部位,进而发挥其药理作用.为更好地了解丹酚酸B在...  相似文献   

18.
In this paper, the interaction between barbital and bovine serum albumin (BSA) was investigated by the method of fluorescence spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by barbital was the result of the formation of BSA-barbital complex, and the effective quenching constants (Ka) were 1.468×104, 1.445×104 and 1.403×104 M−1 at 297, 303 and 310 K, respectively. The thermodynamic parameters enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be −2.679 kJ mol−1 and 70.76 J mol−1 K−1, respectively, according to the van’t Hoff equation. The results indicated that hydrophobic and electrostatic interactions were the dominant intermolecular force in stabilizing the complex. The results of synchronous fluorescence spectra showed that binding of barbital with BSA can induce conformational changes in BSA. In addition, the effects of Cu2+ and Zn2+ on the constants of BSA-barbital complex were also discussed.  相似文献   

19.
Mn(Ⅱ),Co(Ⅱ)与HSA相互作用的荧光光谱研究   总被引:5,自引:0,他引:5  
用荧光光谱法研究了生理pH和等离子点(pH=5.30)时Mn(Ⅱ)、Co(Ⅱ)与HSA的相互作用。根据Forste非辐射能量转移理论,得到了不同pH时Mn(Ⅱ)、Co(Ⅱ)在HSA中的第一强结合位置与Trp-214残基间的距离。这一结果远大于文献报道值,根据Mn(Ⅱ)、Co(Ⅱ)在HSA中的结合部位及HSA的畴结构对这一显著差异进行了讨论。  相似文献   

20.
The absorption and fluorescence spectra of 7, 8-dihydroxy-4-methylcoumarin (DHMC) in ethanol-water (1:9 v/v) solution at varying pH values were investigated . The interaction between DHMC and bovine serum albumin (BSA) was investigated by fluorescence, FT-IR, and circular dichroism (CD) spectroscopy. The Stern-Volmer quenching constant (KSV), the quenching rate constant of the bimolecular reaction (Kq), the binding constant, and number of binding sites (n) of DHMC with BSA were evaluated. The results showed that DHMC quenches the fluorescence intensity of BSA through a static quenching process. Positive value of entropy change (ΔS) and negative value of enthalpy change (ΔH) of the BSA-DHMC interaction were obtained according to the van't Hoff equation. The interaction between DHMC and BSA was driven mainly by hydrophobic forces. The binding process was spontaneous and exothermic. The binding distance between the tryptophan residue in BSA and the DHMC was found to be about 2.6 nm based on the Förster theory of non-radiation energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号