首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical orthogonal polynomials. Moreover, we find four linearly independent solutions of these fourth-order difference equations, and show how the results obtained for modified classical discrete orthogonal polynomials can be extended to modified semi-classical discrete orthogonal polynomials. Finally, we extend the validity of the results obtained for the associated classical discrete orthogonal polynomials with integer order of association from integers to reals.  相似文献   

2.
We derive a system of difference equations satisfied by the three-term recurrence coefficients of some families of discrete orthogonal polynomials.  相似文献   

3.
We consider two important families of BCn-symmetric polynomials, namely Okounkov's interpolation polynomials and Koornwinder's orthogonal polynomials. We give a family of difference equations satisfied by the former as well as generalizations of the branching rule and Pieri identity, leading to a number of multivariate q-analogues of classical hypergeometric transformations. For the latter, we give new proofs of Macdonald's conjectures, as well as new identities, including an inverse binomial formula and several branching rule and connection coefficient identities. We also derive families of ordinary symmetric functions that reduce to the interpolation and Koornwinder polynomials upon appropriate specialization. As an application, we consider a number of new integral conjectures associated to classical symmetric spaces.  相似文献   

4.
We derive the fourth-order difference equation satisfied by the first associated of classical orthogonal polynomials of a discrete variable. We give it explicitly for first associated of Hahn polynomials from which can be derived by a limiting process the equation satisfied by first associated of all classical families (continuous and discrete).  相似文献   

5.
Stationary equilibria of point vortices in the plane and on the cylinder in the presence of a background flow are studied. Vortex systems with an arbitrary choice of circulations are considered. Differential equations satisfied by generating polynomials of vortex configurations are derived. It is shown that these equations can be reduced to a single one. It is found that polynomials that are Wronskians of classical orthogonal polynomials solve the latter equation. As a consequence vortex equilibria at a certain choice of background flows can be described with the help of Wronskians of classical orthogonal polynomials.  相似文献   

6.
In this paper we classify the bivariate second-order linear partial difference equations, which are admissible, potentially self-adjoint, and of hypergeometric type. Using vector matrix notation, explicit expressions for the coefficients of the three-term recurrence relations satisfied by monic orthogonal polynomial solutions are obtained in terms of the coefficients of the partial difference equation. Finally, we make a compilation of the examples existing in the literature belonging to the class analyzed in this paper, namely bivariate Charlier, Meixner, Kravchuk and Hahn orthogonal polynomials.  相似文献   

7.
Para‐orthogonal polynomials derived from orthogonal polynomials on the unit circle are known to have all their zeros on the unit circle. In this note we study the zeros of a family of hypergeometric para‐orthogonal polynomials. As tools to study these polynomials, we obtain new results which can be considered as extensions of certain classical results associated with three term recurrence relations and differential equations satisfied by orthogonal polynomials on the real line. One of these results which might be considered as an extension of the classical Sturm comparison theorem, enables us to obtain monotonicity with respect to the parameters for the zeros of these para‐orthogonal polynomials. Finally, a monotonicity of the zeros of Meixner‐Pollaczek polynomials is proved.  相似文献   

8.
Limiting cases are studied of the Koornwinder-Macdonald multivariable generalization of the Askey-Wilson polynomials. We recover recently and not so recently introduced families of hypergeometric orthogonal polynomials in several variables consisting of multivariable Wilson, continuous Hahn and Jacobi type polynomials, respectively. For each class of polynomials we provide systems of difference (or differential) equations, recurrence relations, and expressions for the (squared) norms of the polynomials in question.

  相似文献   


9.
Sobolev orthogonal polynomials in two variables are defined via inner products involving gradients. Such a kind of inner product appears in connection with several physical and technical problems. Matrix second-order partial differential equations satisfied by Sobolev orthogonal polynomials are studied. In particular, we explore the connection between the coefficients of the second-order partial differential operator and the moment functionals defining the Sobolev inner product. Finally, some old and new examples are given.  相似文献   

10.
We prove that any set of polynomials orthogonal with respect to a discrete measure supported on equidistant points contained in a half line satisfy a second order difference equation. We also give a discrete analogue of the discriminant and give a general formula for the discrete discriminant of a discrete orthogonal polynomial. As an application we give explicit evaluations of the discrete discriminants of the Meixner and the Hahn polynomials. A difference analogue of the Bethe Ansatz equations is also mentioned.Research partially supported by NSF grant DMS 99-70865  相似文献   

11.
For discrete multiple orthogonal polynomials such as the multiple Charlier polynomials, the multiple Meixner polynomials, and the multiple Hahn polynomials, we first find a lowering operator and then give a (r+1)th order difference equation by combining the lowering operator with the raising operator. As a corollary, explicit third order difference equations for discrete multiple orthogonal polynomials are given, which was already proved by Van Assche for the multiple Charlier polynomials and the multiple Meixner polynomials.  相似文献   

12.
In this paper the recurrence relations of symmetric orthogonal polynomials whose measures are related to each other in a certain way are considered. Many of the relations satisfied by the coefficients of the recurrence relations are exposed. The results are applied to obtain, for example, information regarding certain Sobolev orthogonal polynomials and regarding the measures of certain orthogonal polynomial sequences with twin periodic recurrence coefficients.  相似文献   

13.
We consider the problem of evaluating discriminants of general orthogonal polynomials. It is shown that for a general class of weight functions, the functions of the second kind and the orthogonal polynomials are linear independent solutions of the same second order differential equation. We derive a linear fourth-order differential equation satisfied by the numerator polynomials and give two additional linear independent solutions.  相似文献   

14.
We firstly establish the fourth order difference equation satisfied by the Laguerre-Hahn polynomials orthogonal on special non-uniform lattices in general case, secondly give it explicitly for the cases of polynomials r-associated to the classical polynomials orthogonal on linear, q-linear and q-nonlinear (Askey-Wilson) lattices, and thirdly give it semi-explicitly for the class one Laguerre-Hahn polynomials orthogonal on linear lattice.  相似文献   

15.
We introduce a large class of measures with orthogonal polynomials satisfying higher-order difference equations with coefficients independent of the degree of the polynomials. These measures are constructed by multiplying the discrete classical weights of Charlier, Meixner, Krawtchouk, and Hahn by certain variants of the annihilator polynomial of a finite set of numbers.  相似文献   

16.
In a series of papers, Baxter has exploited with great success an equivalence between Szegö polynomials orthogonal on the unit disc, and a certain difference system satisfied by polynomials closely related to the Szegö polynomials. The polynomials occuring in Baxters difference system turn up, as is well known, in a problem of prediction. The present paper follows closely the ideas of Baxter. Apart from some generalizations, the novelty lies in an improved technique.  相似文献   

17.
Partial divided-difference equations and three-term recurrence relations satisfied by the bivariate Askey–Wilson and the bivariate q-Racah polynomials are computed in this work. By using limiting processes, partial divided (or q)-difference equations and three-term recurrence relations are also provided for each of the following families of orthogonal polynomials: the bivariate continuous dual q-Hahn, the bivariate Al-Salam-Chihara, the bivariate continuous q-Hahn, the bivariate q-Hahn, the bivariate dual q-Hahn, the bivariate q-Krawtchouk, the bivariate q-Meixner, and the bivariate q-Charlier polynomials.  相似文献   

18.
We are dealing with the concept of d-dimensional orthogonal (abbreviated d-orthogonal) polynomials, that is to say polynomials verifying one standard recurrence relation of order d + 1. Among the d-orthogonal polynomials one singles out the natural generalizations of certain classical orthogonal polynomials. In particular, we are concerned, in the present paper, with the solution of the following problem (P): Find all polynomial sequences which are at the same time Appell polynomials and d-orthogonal. The resulting polynomials are a natural extension of the Hermite polynomials.

A sequence of these polynomials is obtained. All the elements of its (d + 1)-order recurrence are explicitly determined. A generating function, a (d + 1)-order differential equation satisfied by each polynomial and a characterization of this sequence through a vectorial functional equation are also given. Among such polynomials one singles out the d-symmetrical ones (Definition 1.7) which are the d-orthogonal polynomials analogous to the Hermite classical ones. When d = 1 (ordinary orthogonality), we meet again the classical orthogonal polynomials of Hermite.  相似文献   


19.
本文给出了测度dψ为强分布的一个必要条件,并得到了dψ为强分布时的Laurent多项式最大零点的一个表示。  相似文献   

20.
We use mixed three term recurrence relations typically satisfied by classical orthogonal polynomials from sequences corresponding to different parameters to derive upper (lower) bounds for the smallest (largest) zeros of Jacobi, Laguerre and Gegenbauer polynomials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号