首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Let A2(D) be the Bergman space over the open unit disk D in the complex plane. Korenblum conjectured that there is an absolute constant c∈(0,1) such that whenever |f(z)|?|g(z)| in the annulus c<|z|<1, then ‖f(z)‖?‖g(z)‖. This conjecture had been solved by Hayman [W.K. Hayman, On a conjecture of Korenblum, Analysis (Munich) 19 (1999) 195-205. [1]], but the constant c in that paper is not optimal. Since then, there are many papers dealing with improving the upper and lower bounds for the best constant c. For example, in 2004 C. Wang gave an upper bound on c, that is, c<0.67795, and in 2006 A. Schuster gave a lower bound, c>0.21. In this paper we slightly improve the upper bound for c.  相似文献   

2.
    
Let be the Bergman space over the open unit disk in the complex plane. Korenblum's maximum principle states that there is an absolute constant , such that whenever ( ) in the annulus , then . In this paper we prove that Korenblum's maximum principle holds with .

  相似文献   


3.
    
It is shown that the formula for the Möbius pseudodistance for the annulus yields better estimates than previously known for the constant in the Bergman space maximum principle.

  相似文献   


4.
5.
本文把最大模原理及 Phragmén—— Lindelof定理推广到具有保域性的一类连续函数上 ,得到若干结果 .  相似文献   

6.
In this paper, we generalize Omori–Yau maximum principle to Finsler geometry. As an application, we obtain some Liouville-type theorems of subharmonic functions on forward complete Finsler manifolds.  相似文献   

7.
8.
9.
    
Let Ap (??) (p ≥ 1) be the Bergman space over the open unit disk ?? in the complex plane. Korenblum's maximum principle states that there is an absolute constant c ∈ (0, 1) (may depend on p), such that whenever |f (z)| ≤ |g (z)| (f, gAp (??)) in the annulus c < |z | < 1, then ∥f ≤ ∥g ∥. For p ≥ 1, let cp be the largest value of c for which Korenblum's maximum principle holds. In this note we prove that cp → 1 as p → ∞. Thus we give a positive answer of a question of Hinkkanen. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper, we consider a class of infinite-horizon discounted optimal control problems with nonsmooth problem data. A maximum principle in terms of differential inclusions with a Michel type transversality condition is given. It is shown that, when the discount rate is sufficiently large, the problem admits normal multipliers and a strong transversality condition holds. A relationship between dynamic programming and the maximum principle is also given.The author is indebted to Francis Clarke for helpful suggestions and discussions.  相似文献   

11.
Variants of the strong maximum principle are established for subsolutions to degenerate parabolic equations for which the standard version of the strong maximum principle does not hold. The results are formulated for viscosity solutions.  相似文献   

12.
Using parabolic maximum principle, we apply the analytic method to obtain lower comparison inequalities for non-negative weak supersolutions of the heat equation associated with a regular strongly ρ-local Dirichle form on the abstract metric measure space. As an application, we obtain lower estimates for heat kernels on some Riemannian manifolds.  相似文献   

13.
This paper surveys theoretical results on the Pontryagin maximum principle (together with its conversion) and nonlocal optimality conditions based on the use of the Lyapunov-type functions (solutions to the Hamilton-Jacobi inequalities). We pay special attention to the conversion of the maximum principle to a sufficient condition for the global and strong minimum without assumptions of the linear convexity, normality, or controllability. We give the survey of computational methods for solving classical optimal control problems and describe nonstandard procedures of nonlocal improvement of admissible processes in linear and quadratic problems. Furthermore, we cite some recent results on the variational principle of maximum in hyperbolic control systems. This principle is the strongest first order necessary optimality condition; it implies the classical maximum principle as a consequence.  相似文献   

14.
An extension of Pontryagin's maximum principle to the case where the state space is infinite dimensional is given. The control process is governed by ordinary nonlinear differential equations. A property of control processes, which is analogous to well-known, nonlinear interior mapping theorems, makes up the basis for the proofs.  相似文献   

15.
We prove a stochastic maximum principle for controlled processes X(t)=X(u)(t) of the form
dX(t)=b(t,X(t),u(t)) dt+σ(t,X(t),u(t)) dB(H)(t),
where B(H)(t) is m-dimensional fractional Brownian motion with Hurst parameter . As an application we solve a problem about minimal variance hedging in an incomplete market driven by fractional Brownian motion.  相似文献   

16.
This note presents a family of linear maximum principles for the discrete-time optimal control problem, derived from the saddle-point theorem of mathematical programming. Some simple examples illustrate the applicability of the main theoretical results.  相似文献   

17.
An important class of problems in philosophy can be formulated as mathematical programming problems in an infinite-dimensional vector space. One such problem is that of probability kinematics: the study of how an individual ought to adjust his degree-of-belief function in response to new information. Much work has recently been done to establish maximum principles for these generalized programming problems (Refs. 3–4). Perhaps, the most general treatment of the problem presented to date is that by Neustadt (Ref. 1). In this paper, the problem of probability kinematics is formulated as a generalized mathematical programming problem and necessary conditions for the optimal revised degree-of-belief function are derived from an abstract maximum principle contained in Neustadt's paper.This work was supported by the National Research Council of Canada.The author is grateful to G. J. Lastman and J. A. Baker of the University of Waterloo for numerous suggestions made for improvement of this paper. The problem of probability kinematics was brought to the author's attention by W. L. Harper of the University of Western Ontario.  相似文献   

18.
We consider a Bolza optimal control problem with state constraints. It is well known that under some technical assumptions every strong local minimizer of this problem satisfies first order necessary optimality conditions in the form of a constrained maximum principle. In general, the maximum principle may be abnormal or even degenerate and so does not provide a sufficient information about optimal controls. In the recent literature some sufficient conditions were proposed to guarantee that at least one maximum principle is nondegenerate, cf. [A.V. Arutyanov, S.M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints, SIAM J. Control Optim. 35 (1997) 930–952; F. Rampazzo, R.B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control, IMA 16 (4) (1999) 335–351; F. Rampazzo, R.B. Vinter, Degenerate optimal control problems with state constraints, SIAM J. Control Optim. 39 (4) (2000) 989–1007]. Our aim is to show that actually conditions of a similar nature guarantee normality of every nondegenerate maximum principle. In particular we allow the initial condition to be fixed and the state constraints to be nonsmooth. To prove normality we use J. Yorke type linearization of control systems and show the existence of a solution to a linearized control system satisfying new state constraints defined, in turn, by linearization of the original set of constraints along an extremal trajectory.  相似文献   

19.
Necessary conditions in the form of Pontryagin’s maximum principle are derived for impulsive control problems with mixed constraints. A new mathematical concept of impulsive control is introduced as a requirement for the consistency of the impulsive framework. Additionally, this control concept enables the incorporation of the engineering needs to consider conventional control action while the impulse develops. The regularity assumptions under which the maximum principle is proved are weaker than those in the known literature. Ekeland’s variational principle and Lebesgue’s discontinuous time variable change are used in the proof. The article also contains an example showing how such impulsive controls could be relevant in actual applications.  相似文献   

20.
A maximum principle for optimal control problems with mixed constraints   总被引:1,自引:0,他引:1  
Necessary conditions in the form of maximum principles are derivedfor optimal control problems with mixed control and state constraints.Traditionally, necessary condtions for problems with mixed constraintshave been proved under hypothesis which include the requirementthat the Jacobian of the mixed constraint functional, with respectto the control variable, have full rank. We show that it canbe replaced by a weaker ‘interiority’ hypothesis.This refinement broadens the scope of the optimality conditions,to cover some optimal control problems involving differentialalgebraic constraints, with index greater than unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号