首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding properties on theasinesin to human serum albumin (HSA) have been studied for the first time using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results showed that theasinesin strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure, and non-radiation energy transfer happened within molecules. The number of binding site was 1, and the efficiency of Förster energy transfer provided a distance of 4.64 nm between tryptophan and theasinesin binding site. At 298, 310 and 323 K, the quenching constants of HSA–theasinesin system were 2.55×103, 2.16×103 and 1.75×103 mol L−1. ΔHθ, ΔSθ and ΔGθ were obtained based on the quenching constants and thermodynamic theory (ΔHθ<0, ΔSθ>0 and ΔGθ<0). These results indicated that hydrophobic and electrostatic interactions are the mainly binding forces in the theasinesin–HSA system. In addition, the results obtained from synchronous fluorescence spectra showed that the binding of theasinesin with HSA could induce conformational changes in HSA.  相似文献   

2.
The mutual interaction of oxybutynin hydrochloride (OB) with bovine serum albumin (BSA) was investigated by fluorescence, UV–vis absorption, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopies under simulative physiological conditions. The results of fluorescence titration revealed that OB could quench the intrinsic fluorescence of BSA by static quenching and there was a single class of binding sites on BSA for this drug. The thermodynamic parameters ΔH, ΔS, and ΔG calculated at different temperatures indicated that hydrogen bonds and van der Waals interactions were the dominant intermolecular forces in stabilizing the OB–BSA complexes. According to the theory of Förster’s non-radiation energy transfer, the binding distance r between OB and BSA was evaluated to be 3.27 nm. The displacement experiments confirmed that OB could bind to site I of BSA. The FT-IR and CD spectra showed that the binding of OB to BSA induced conformational changes in BSA.  相似文献   

3.
The mechanism of interaction of an antidepressant, fluoxetine hydrochloride (FLX) with bovine serum albumin (BSA) has been studied by different spectroscopic techniques under physiological conditions. FLX was found to quench the intrinsic fluorescence of protein by static quenching mechanism. The binding constant ‘K’ was found to be 7.06×103 M−1 at 296 K. The value of ‘n’ close to unity revealed that the BSA has a single class of binding site for FLX. Based on thermodynamic parameters, hydrogen bonding and van der Waals forces were proposed to operate between BSA and FLX. The change in conformation of protein was noticed upon its interaction with the drug. From displacement studies it was concluded that the FLX bound to protein at site I. The effects of various common metals ions on the binding were also investigated.  相似文献   

4.
In this paper, the binding of trazodone hydrochloride (TZH) to bovine serum albumin (BSA) was investigated by spectroscopic (fluorescence, spectrophotometry and circular dichroism) techniques under simulative physiological conditions. A strong fluorescence quenching reaction of TZH to BSA was observed and the quenching mechanism was suggested as dynamic quenching according to the Stern-Volmer equation. The binding constants of TZH with BSA at 288, 302 and 309 K were calculated as (1.56±0.003)×104, (2.31±0.002)×104 and (5.44±0.004)×104 M−1, respectively. The thermodynamic parameters, ΔH0 and ΔS0 were obtained to be 39.86±0.008 kJ mol−1 and 217.89±0.011 J mol−1 K−1, respectively, which indicated the presence of hydrophobic forces between TZH and BSA. The spectral results observed showed that the binding of TZH to BSA induced conformational changes in BSA. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between donor (BSA) and acceptor (TZH) was found to be 2.4 nm. The effect of common ions on binding of TZH to BSA was also examined.  相似文献   

5.
The absorption and fluorescence spectra of 7, 8-dihydroxy-4-methylcoumarin (DHMC) in ethanol-water (1:9 v/v) solution at varying pH values were investigated . The interaction between DHMC and bovine serum albumin (BSA) was investigated by fluorescence, FT-IR, and circular dichroism (CD) spectroscopy. The Stern-Volmer quenching constant (KSV), the quenching rate constant of the bimolecular reaction (Kq), the binding constant, and number of binding sites (n) of DHMC with BSA were evaluated. The results showed that DHMC quenches the fluorescence intensity of BSA through a static quenching process. Positive value of entropy change (ΔS) and negative value of enthalpy change (ΔH) of the BSA-DHMC interaction were obtained according to the van't Hoff equation. The interaction between DHMC and BSA was driven mainly by hydrophobic forces. The binding process was spontaneous and exothermic. The binding distance between the tryptophan residue in BSA and the DHMC was found to be about 2.6 nm based on the Förster theory of non-radiation energy transfer.  相似文献   

6.
Chloramphenicol (CHL) and quinolone drugs like ofloxacin (OFLX), lomefloxacin (LMX) and ciprofloxacin (CPFX) can all quench the fluorescence of bovine serum albumin (BSA) in the aqueous solution of pH=7.40. This quenching effect becomes more significant when CHL and quinolone drugs coexist. Based on this, further studies on the interactions between CHL and quinolone drugs using fluorescence spectrum are established. The results showed that the interaction between the drugs would increase the binding constant and binding stability of the drug and protein, thus reducing the amount of drugs transported to their targets. Therefore, free drug concentration at targets would decrease, reducing the efficacy of the drugs. It indicated that there exists antagonistic action between drugs. The results also showed that the quenching mechanism of BSA by the drugs is a static procedure. The number of binding sites is 1 in various systems. Due to the existence of the antagonistic action between drugs, the binding distance r is reduced. Studies utilizing synchronous spectra showed that the antagonistic action between the drugs would affect the conformation of BSA, making protein molecules extend and hydrophobic decrease. The order of antagonistic action between CHL and quinolone drugs is: CPFX>OFLX>LMX with presence of BSA.  相似文献   

7.
在模拟生理条件下,用荧光光谱法研究了碳纳米管对牛血清白蛋白和加替沙星荧光光谱特性的影响以及有无碳纳米管共存时加替沙星对牛血清白蛋白荧光光谱特性的影响.实验结果表明,加替沙星和碳纳米管都可以使牛血清白蛋白的荧光强度发生静态猝灭.在碳纳米管的存在下,加替沙星与牛血清白蛋白的结合作用有所减弱.Stern-Volmer荧光猝灭...  相似文献   

8.
The interaction of La3+ to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by La3+ was a static quenching process and the binding constant is 1.75×104 L mol−1 and the number of binding sites is 1 at 289 K. The thermodynamic parameters (ΔH=−20.055 kJ mol−1, ΔG=−23.474 kJ mol−1, and ΔS=11.831 J mol−1 K−1) indicate that electrostatic effect between the protein and the La3+ is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of La3+ changed the conformation of BSA.  相似文献   

9.
In this paper, the interaction between barbital and bovine serum albumin (BSA) was investigated by the method of fluorescence spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by barbital was the result of the formation of BSA-barbital complex, and the effective quenching constants (Ka) were 1.468×104, 1.445×104 and 1.403×104 M−1 at 297, 303 and 310 K, respectively. The thermodynamic parameters enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be −2.679 kJ mol−1 and 70.76 J mol−1 K−1, respectively, according to the van’t Hoff equation. The results indicated that hydrophobic and electrostatic interactions were the dominant intermolecular force in stabilizing the complex. The results of synchronous fluorescence spectra showed that binding of barbital with BSA can induce conformational changes in BSA. In addition, the effects of Cu2+ and Zn2+ on the constants of BSA-barbital complex were also discussed.  相似文献   

10.
A competitive reaction exists between bovine serum albumin (BSA) and neomycin (NM) when ponceau S (PS) is chosen as fluorescent probe. This reaction was studied by fluorescence spectroscopy and UV-vis absorption spectroscopy. The static fluorescence quenching process between BSA and PS was confirmed and the binding constant, the number of binding sites and type of interaction forces between BSA and PS were obtained. It was observed that when NM was added into BSA-PS system, the relative fluorescence intensity of BSA was recovered gradually with increase in concentration of NM, which shows that there existed competitive reaction between BSA and NM. According to competitive reaction mechanism, the equilibrium concentration of PS, the binding constant and the type of interaction forces between PS and NM were obtained.  相似文献   

11.
The interaction of disperse blue SBL (DBSBL) with bovine serum albumin (BSA) was investigated using fluorescence, UV-visible and far-UV circular dichroism (CD) spectroscopy. The results showed that the fluorescence of BSA was quenched by DBSBL through static quenching after correcting for the inner filter effects (IFE). The binding constant Kb of DBSBL with BSA at 288, 298 and 303 K were 0.116×106, 3.18×106 and 12.3×106 L mol−1, respectively. The thermodynamic parameters, standard enthalpy change (ΔH0) and standard entropy change (ΔS0), for the reaction were evaluated to be 227.2 kJ mol−1 and 886 J mol−1 K−1 according to the van’t Hoff equation. The above data suggested that the forces acting between DBSBL and BSA were predominantly hydrophobic interactions. The results of UV-visible absorption and far-UV CD spectroscopy also revealed that the conformation and microenvironment of BSA molecule were changed after DBSBL binding to BSA. At 288 K one binding site was present but at higher temperatures a second binding site was detected between DBSBL and the BSA molecule. The lower bound for the distance between the bound dye and the Trp residue is 2.35 nm as calculated from Forster energy transfer.  相似文献   

12.
The fluorescence spectroscopic technique has been efficiently employed to investigate the interaction between bovine serum albumin (BSA) and cetylpyridinium bromide (CPB) under different pH and temperature conditions. The binding constant, number of binding sites, thermodynamic parameters such as ΔG, ΔH, ΔS, and nature of binding forces between BSA and CPB were obtained by measuring the steady state fluorescence quenching of BSA by CPB. The experimental results showed that the fluorescence quenching of BSA by CPB was a result of the formation of CPB-BSA complex. The static quenching was confirmed from the Stern-Volmer quenching constant at different temperatures. The effect of CPB on the conformation of BSA was analyzed using synchronous and three-dimensional fluorescence spectroscopy. pH dependence complex formation between BSA-CPB is due to the interaction between cationic side chain of CPB and the net charge developed on BSA. The distance ‘r’ between BSA and CPB was obtained according to the fluorescence resonance energy transfer.  相似文献   

13.
The interaction between gliclazide and bovine serum albumin was investigated by fluorescence and synchronous fluorescence spectroscopy. From the experimental results, it was found that the quenching mechanism was static. The results of the synchronous fluorescence obtained indicated that the binding of gliclazide with bovine serum albumin could affect conformation in bovine serum albumin. In addition, the binding constants (Ka), binding sites (n), thermodynamic parameters, binding forces, Hill’s coefficient, and binding rate of gliclazide to protein calculated from two methods using the same equation were consistent at three different temperatures (298, 310, 318 K). This indicated that as a useful supplement to the conventional method, synchronous fluorescence spectroscopy could be used to study the mechanism of drugs and proteins. The conclusion was verified by UV/vis method.  相似文献   

14.
In this paper, the pH-dependent binding of Eosin Y and bovine serum albumin (BSA) was investigated by spectral methods, including resonance light scattering (RLS), absorption and fluorescence spectrometry. Due to the pH-dependent structure of Eosin Y and BSA, the interaction of BSA and Eosin Y depended on the solution pH value. Especially at pH 2.6 and 9.2, the RLS intensity of BSA was obviously enhanced in the presence of Eosin Y. However, the fluorescence intensity of BSA was quenched in the presence of Eosin Y. To fully understand the pH-dependent binding of BSA and Eosin Y, fluorescence quenching technique was introduced. Based on the fluorescence data obtained, the style of binding, the binding constant, the binding site number and the thermodynamic parameters for the interaction of BSA and Eosin Y were studied. Based on Förster non-radiation energy transfer theory, the distance between donor BSA and acceptor Eosin Y was obtained.  相似文献   

15.
The interaction between three kinds of flavonoids and bovine serum albumin (BSA) was investigated by fluorescence and UV-vis absorption spectrometry. The results indicated that flavonoids have strong ability to quench the intrinsic fluorescence of BSA by forming complexes. The binding constants, number of binding sites, thermodynamic parameters and energy transfer mechanisms were also investigated. Conformation change of BSA was observed from synchronous, three-dimensional fluorescence and circular dichroism spectrum.  相似文献   

16.
The interaction of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) with bovine serum albumin (BSA) has been studied using absorption and steady state fluorescence techniques. Fluorescence spectrum of BSA (λexi=280 nm) in the presence of DBO clearly shows that DBO acts as a quencher. The number of binding sites ‘n’ and apparent binding constant ‘K’ were measured by Stern-Volmer equation. Synchronous fluorescence and absorption spectra were used to study protein conformation. The interaction between DBO and BSA is consistent with static quenching and the conformational changes of BSA observed.  相似文献   

17.
The interactions of bovine serum albumin (BSA) with two local anesthetics, procaine hydrochloride (PCH) and tetracaine hydrochloride (TCH) were studied using spectroscopic methods such as fluorescence and ultraviolet visible (UV-vis), and electrochemical techniques including cyclic voltammetry (CV) and differential pulsed stripping voltammetry (DPSV). The results obtained from these techniques turned out that both PCH and TCH could bind to BSA. The binding constants (KA) and the number of binding sites (n) of the two drugs with BSA at different temperatures were determined, respectively. At 291 K, KA was found as 2.40×104 and 1.42×104 L mol−1 and n was 1.03 and 0.99 for PCH-BSA and TCH-BSA, respectively. According to van’t Hoff equation, the thermodynamic parameters, ΔG, ΔH and ΔS, were obtained, showing the involvement of hydrophobic and electrostatic force in these interactions. Based on the theory of the Förster energy transference, the distance between the acceptor (PCH or TCH) and the donor (BSA) were determined as 2.32 and 3.62 nm for PCH and TCH, respectively. The effects of Fe3+, Cu2+, Mg2+, Mn2+, Zn2+ and Ca2+ on the binding of PCH or TCH to BSA were also evaluated.  相似文献   

18.
The fluorescence and ultraviolet spectroscopies were explored to study the interaction between edaravone (EDA) and bovine serum albumin (BSA) under imitated physiological condition. The experimental results show that the fluorescence quenching mechanism between EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites, and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between EDA and BSA was calculated to be 3.10 nm. The effect of EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy. In addition, the effects of some common metal ions Mg2+, Ca2+, Cu2+, and Ni2+ on the binding constant between EDA and BSA were examined.  相似文献   

19.
The interactions of mitomycin C (MMC), fluorouracil (FU), mercaptopurine (MP) and doxorubicin hydrochloride (DXR) with bovine serum albumin (BSA) were studied by spectroscopic method. Quenching of fluorescence of serum albumin by these drugs was found to be a static quenching process. The binding constants (KA) were 9.66×103, 2.08×103, 8.20×102 and 7.50×103 L mol−1 for MMC-, FU-, MP- and DXR-BSA, respectively, at pH 7.4 Britton-Robinson buffer at 28 °C. The thermodynamic functions such as enthalpy change (ΔH), entropy change (ΔS) and Gibbs free-energy change (ΔG) for the reactions were also calculated according to the thermodynamic equations. The main forces in the interactions of these drugs with BSA were evaluated. It was found that the interactions of MMC and FU with BSA were exothermic processes and those of MP and DXR with BSA were endothermic. In addition, the binding sites on BSA for the four drugs were probed by the changes of binding properties of these drugs with BSA in the presence of two important site markers such as ibuprofen and indomethacin. Based on the Föster theory of non-radiation energy transfer, the binding distances between the drugs and tryptophane were calculated and they were 3.00, 1.14, 2.85, and 2.79 nm for MMC, FU, MP and DXR, respectively.  相似文献   

20.
The interaction of methyl blue (MB) with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopy. The intrinsic fluorescence of HSA was quenched by MB, which was rationalized in terms of the static quenching mechanism. The number of binding sites and the apparent binding constants at different temperatures were obtained from the Stern-Volmer analysis of the fluorescence quenching data. The thermodynamic parameters determined by the van’t Hoff analysis of the binding constants (ΔH°=39.8 kJ mol−1 and ΔS°=239 J mol−1 K−1) clearly indicate that binding is absolutely entropy-driven and enthalpically disfavored The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (MB) were calculated as 60% and 2.06 nm from the Förster theory of non-radiation energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号