首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

2.
Cathodoluminescent (CL) spectra of Li-doped Gd2−xYxO3:Eu3+ solid-solution (0.0?x?0.8) were investigated at low voltages (300 V-1 kV). The CL intensity is maximum for the composition of x=0.2 and gradually reduces with increasing the amount of substituted Y content. In particular, small (∼100 nm) particles of Li-doped Gd1.8Y0.2O3:Eu3+ are obtained by firing the citrate precursors at only 650°C for 18 h. Relative red-emission intensity at 300 V of this phosphor is close to 180% in comparison with that of commercial red phosphor Y2O3:Eu3+. An increase of firing temperature to 900°C results in 400-600 nm sized spherical particles. At low voltages (300-800 V), the CL emission of 100 nm sized particles is much stronger than that of 400-600 nm sized ones. In contrast, the larger particles exhibit the higher CL emission intensity at high voltages (1-10 kV). Taking into consideration small spherical morphology and effective CL emission, Li-doped Gd1.8Y0.2O3:Eu3+ appears to be an efficient phosphor material for low voltage field emission display.  相似文献   

3.
Y0.99−xPO4:0.01Dy3+, xBi3+ (x=0, 0.01, 0.05, 0.10, 0.15, 0.20 and 0.25) phosphors have been synthesized by a modified chemical co-precipitation method using urea as a pH value regulator. The samples were characterized by X-ray powder diffraction (XRD) and photoluminescence spectroscopy. XRD results show that the samples have only single tetragonal structure when x≤0.15, but extraneous BiPO4 phase appears besides major tetragonal phase when x≥0.20. The crystallinity of the samples is found to improve with increasing Bi3+ ion concentration from 0 to 15 mol%, and then decreased for higher concentrations associated with increasing BiPO4 phase. Photoluminescence excitation spectra results show that the phosphor can be efficiently excited by ultraviolet light from 250 to 400 nm including four peaks at 294, 326, 352 and 365 nm. Emission spectra exhibit strong blue emission (483 nm) and another strong yellow emission (574 nm). When the Bi3+ ion concentration is 1 mol%, the intensity of excitation and emission spectra increased evidently. In addition, the yellow-to-blue emission intensity ratio (IY/IB) is strongly related to the excitation wavelength and not to the Bi3+ ion concentration.  相似文献   

4.
The excitation spectra of M (M=Si4+, Ti4+) and Eu3+ co-doped BaZr(BO3)2, BaZrO3:Eu and La2Zr2O7:Eu in the vacuum ultraviolet (VUV) regions of 110-300 nm are investigated and the host-lattice absorption are characterized. The result indicated that BaZr(BO3)2:Eu3+ phosphor has a strong absorption under the VUV excitation, and in the host-lattice excitation, the strong band at 130-160 nm could be due to the BO3 atomic groups; the band at 160-180 nm is related to the excitation of Ba-O; 180-200 nm corresponds to the charge transfer (CT) transition of Zr-O. The band at 200-235 nm due to the CT band of Eu3+-O2− and a bond valence study explained the observed weak CT band of Eu3+-O2− in the excitation spectra of BaZr(BO3)2:Eu3+. The emission results show that Si4+ can sensitize luminescence in the host of BaZr(BO3)2:Eu but Ti4+ has no improvement effect on luminescence.  相似文献   

5.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

6.
In this study, the red phosphors, Y2W1−xMoxO6:Eu3+ and Y2WO6:Eu3+,Bi3+, have been investigated for light-emitting diode (LED) applications. In Y2WO6:Eu3+, the excitation band edge shifts to longer wavelength with the incorporation of Mo6+ or Bi3+ ions. The emission spectra exhibit 5D07F1 and 5D07F2 transition of Eu3+ ion at 588, 593, and 610 nm, respectively. Moreover, the bluish-green luminescence of the WO66− at about 460 nm is observed to decrease with the incorporation of Mo6+, which results in pure red color. Thus, this study shows that the red phosphor, Y2WO6:Eu3+, incorporated with Mo6+ or Bi3+ ions is advantageous for LEDs applications.  相似文献   

7.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

8.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

9.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

10.
Jidi Liu  Xue Yu  Jie Li 《Journal of luminescence》2010,130(11):2171-2174
A series of green phosphors Zn1.92−2xYxLixSiO4:0.08Mn2+ (0≤x≤0.03) were prepared by solid-state synthesis method. Phase and lattice parameters of the synthesized phosphors were characterized by powder X-ray diffractometer (XRD) and the co-doped effects of Y3+/Li+ upon emission intensity and decay time were investigated under 147 nm excitation. The results indicate that the co-doping of Y3+/Li+ has favorable influence on the photoluminescence properties of Zn2SiO4:Mn2+, and the optimal photoluminescence intensity of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 103% of that of commercial phosphor when the doping concentration of Y3+/Li+ is 0.01 mol. Additionally, the decay time of phosphor is much shortened and the decay time of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 3.39 ms, shorter by 1.83 ms than that of commercial product after Y3+/Li+ co-doping.  相似文献   

11.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

12.
A simple combustion route was employed for the preparation of Eu3+-doped MgAl1.8Y0.2−xO4 nanocrystals using metal nitrates as precursors and urea as a fuel in a preheated furnace at 500 °C. The powders thus obtained were then fired at 1000 °C for 3 h to get better luminescent properties. The incorporation of Eu3+ activator in these nanocrystals was checked by luminescence characteristics. These nanocrystals displayed bright red color on excitation under 254 nm UV source. The main emission peak was assigned to the transition [5D07F2] at 615 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were carried out to understand surface morphological features and the particle size. Crystal structures of the nanocrystals were investigated by the X-ray diffraction (XRD) technique. The crystallite size of the as-prepared nanocrystals was around 29 nm, which was evaluated from the broad XRD peaks. The crystallite size increased to ∼45 nm on further heat treatment at 1000 °C.  相似文献   

13.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

14.
The luminescence properties of Ba3Tb0.9Eu0.1(PO4)3 and Ba3Gd0.9Eu0.1(PO4)3 phosphors were studied for excitation over the 120-300 nm wavelength range. It is found that Tb3+, which exhibits a strong vacuum-ultraviolet (VUV) absorption band, provides sensitisation of Eu3+ emission in this host. This effect can be used to develop phosphors with enhanced conversion efficiency of the VUV radiation into visible light.  相似文献   

15.
In this paper, a novel phosphor, Y6W2O15:Eu3+ was synthesized by thermal decomposition and phase transition of its decatungstate gel precursor. With stepwise increase of temperature to 750 °C, a crystalline phase of Y6W2O15:Eu3+forms that gives intense red emission when excited at 466 nm, the emission is attributed to the Eu3+ ions transitions from 5D0 excited states to 7FJ (J=0-4) ground states. The long excitation wavelength proves the Eu3+ transition follows the photoexcitation of the oxygen-metal (O→W lmct) charge transfer bands in yttrium tungstate. Some structural information regarding Y6W2O15 provided by luminescence is in accord with that characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The long-wavelength excitation properties of this material may find application in the production of red phosphors for white light-emitting diodes (LEDs).  相似文献   

16.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

17.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

18.
In the present paper, phosphors with the composition Y3−x−yAl5O12:Bi3+x, Dy3+y were synthesized with solid state reactions. The luminescence properties of Bi3+ and Dy3+ in Y3Al5O12(YAG) and the energy transfer from Bi3+ to Dy3+ were investigated in detail. Bi3+ in YAG emits one broad band peaking at 304 nm which can be ascribed to the transition from excited states 3P0, 1 to ground state 1S0. Dy3+ in YAG emits two groups of peaks around 484 and 583 nm, respectively, which can be ascribed to the transitions from excited state 4F9/2 to ground states 6H15/2 and 6H13/2. The co-doping of Bi3+ enhances the luminescent intensity of Dy3+ by ∼7 times because Bi3+ can transfer the absorbed energy to Dy3+ efficiently. The mechanism of energy transfer was also discussed.  相似文献   

19.
Pure Li6CaB3O8.5 and Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) materials were prepared by a solution combustion synthesis method. The phase of synthesized materials was determined using the powder XRD and FTIR. The synthesized materials were investigated using spectrofluorometer at room temperature. The emission and excitation bands of the synthesized phosphors were observed at 307 and 268 nm, respectively. The dependence of the emission intensity on the Pb2+ concentration for the Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) was studied and observed that the optimum concentration of Pb2+ in phosphor is 0.01 mol. The Stokes shift of the synthesized phosphor was calculated to be 4740 cm-1.  相似文献   

20.
In this study, Eu3+-doped nanocrystalline Ca10(PO4)6(OH)2 (Ca10−xEux(PO4)6(OH)2) with different particle sizes have been prepared by the thermal decomposition of precursors. Size-dependent microstructure could be observed in nanocrystalline Ca10−xEux(PO4)6(OH)2. The lattices of Ca10−xEux(PO4)6(OH)2 nanocrystals were more distorted in comparison with the bulk, and the smaller the particle size, the more distorted the lattices. Room temperature photoluminescence showed europium site preference was also size-dependent, with the majority of Eu3+ ions occupying Ca(II) sites in the bulk, but more and more Eu3+ ions occupying Ca(I) sites in Ca10−xEux(PO4)6(OH)2 with decreasing particle size. Fluorescent properties of Ca10−xEux(PO4)6(OH)2 were considered to be influenced by both microstructure and site preference of Eu3+ ions. An abnormal strong intensity of 5D0-7F0 transition was observed in bulk and larger Ca10−xEux(PO4)6(OH)2 nanocrystals, but the relative intensities of 5D0-7F0 transition to 5D0-7F1,2,3,4 transition of Eu3+ became weaker as the particle sizes decreased. As the particle sizes became smaller, the ratios of the red emission transition (5D0-7F2) to the orange emission transition (5D0-7F1) (R/O values) first increased by comparing the bulk sample with 96 nm sample, and then decreased by comparing 96 nm sample to 57 nm sample. The quenching concentrations of Ca10−xEux(PO4)6(OH)2 samples increased with decreasing particle size. Possible mechanisms responsible for these phenomena were proposed. Since nanosized Ca10−xEux(PO4)6(OH)2 showed higher fluorescent intensities, higher R/O values and higher quenching concentrations, this material is considered to be a promising phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号