首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnS nanorods were fabricated by annealing precursor ZnS nanoparticles, which were prepared by one-step, solid-state reaction of ZnCl2 and Na2S through grinding by hand at ambient temperature, in NaCl flux. The as-prepared ZnS nanorods have diameters of 40-80 nm, and lengths up to several micrometers. The structural features and chemical composition of the nanorods were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and Raman spectra.  相似文献   

2.
Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.  相似文献   

3.
In the present work, wurtzite ZnS hierarchical microsphere nanostructures composed of nanowires were synthesized through hydrothermal method. The morphologies and microstructures of the as obtained wurtzite ZnS sample were investigated by scanning electron microscopy and transmission electron microscopy. The results show that the diameter of the nanowires is about 10 nm, the length is about 500 nm, growing along the [0 0 1] direction. UV–visible spectroscopy shows that the band gap of the as obtained ZnS hierarchical microspheres is 3.4 eV. Room temperature photoluminescence measurements reveals a strong green emission peak at around 516 nm. The N2 adsorption–desorption isotherms experiment at 77 K exhibits that the surface area of the ZnS sample is 99.87 m2 g−1.  相似文献   

4.
CuO nanostructures at different morphologies were synthesized in controlled manner using a simple low-temperature solvothermal technique. Controlling the pH of content the reaction mixture, nanoparticles, nanorods and nanocloud CuO structures were synthesized at temperature of 100-150 °C with excellent reproducibility. High-resolution electron microscopy revealed the well crystalline nature of all the nanostructures with preferential growth along the [0 0 2] direction for linear structures. Photoluminescence spectrum of the as-grown nanostructures revealed oxygen-vacancy-related defects in them. The average sizes of NP-CuO (nanoparticles of CuO) at different morphologies were between 40 and 100 nm. The structure, morphology and size of NP-CuO were determined by X-ray diffraction powder (XRD), scanning electron microscopy (SEM), solid state Photo Luminescent (PL) and EDAX analysis.  相似文献   

5.
The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10−1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ∼600 nm.  相似文献   

6.
W-doped ZnO nanostructures were synthesized at substrate temperature of 600 °C by pulsed laser deposition (PLD), from different wt% of WO3 and ZnO mixed together. The resulting nanostructures have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence for structural, surface morphology and optical properties as function of W-doping. XRD results show that the films have preferred orientation along a c-axis (0 0 L) plane. We have observed nanorods on all samples, except that W-doped samples show perfectly aligned nanorods. The nanorods exhibit near-band-edge (NBE) ultraviolet (UV) and violet emissions with strong deep-level blue emissions and green emissions at room temperature.  相似文献   

7.
Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed.  相似文献   

8.
GaN nanowires and nanorods have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/V films at 900 °C in a quartz tube. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrum were carried out to characterize the structure, morphology, and photoluminescence properties of GaN sample. The results show that the GaN nanowires and nanorods with pure hexagonal wurtzite structure have good emission properties. The growth direction of nanostructures is perpendicular to the fringes of (1 0 1) plane. The growth mechanism is also briefly discussed.  相似文献   

9.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.  相似文献   

10.
Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.  相似文献   

11.
Zinc sulfide semiconductor nanocrystals doped Mn2+ have been synthesized via a solution-based method utilizing optimum dopant concentration (4%) and employing polyvinyl pyrrolidone (PVP) and sodium hexametapolyphosphate (SHMP) as capping agents. UV-vis absorbance spectra for all of the synthesized nanocrystals show an exitonic peak at around 310 nm. The particle size and morphology were characterized by scanning electron microscopy (SEM), FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence spectrum (PL). Diffraction data confirmed that the crystallite size is around 3-5 nm. Room temperature photoluminescence (PL) spectrum for the bare ZnS sample shows a strong band at ∼445 nm. The uncapped and capped(SHMP, PVP) ZnS:Mn2+ samples show a strong and broad band in the ∼580-585 nm range.  相似文献   

12.
A new method was applied to prepare GaN nanorods. In this method, gallium oxide (Ga2O3) gel was firstly formed by a sol-gel processing using gallium ethanol, Ga(OC2H5)3, as a new precursor. GaN nanorods were successfully synthesized after annealing of the Ga2O3 gel at 1000 °C for 20 min in flowing ammonia. The as-prepared nanorods were confirmed as single crystalline GaN with wurtzite structure by X-ray diffraction (XRD), selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). Transmission electron microscopy (TEM) displayed that the GaN nanorods were straight and smooth, with diameters ranging from 200 nm to 1.8 μm and lengths typically up to several tens of microns. When excited by 280 nm light at room temperature, the GaN nanorods had a strong ultraviolet luminescence peak located at 369 nm and a blue luminescence peak located at 462 nm, attributed to GaN band-edge emission and the existence of the defects or surface states, respectively.  相似文献   

13.
Strontium carbonate nanorods have been successfully synthesized via solid-state decomposition of a new precursor, [Sr(Pht)(H2O)2]. The obtained nanorods were found to be orthorhombic with the length of 70-100 nm and the diameter of about 10-15 nm. The Effect of calcinations temperature on morphology and purity of the products has been investigated. Strontium carbonate nanorods were formed at 500 °C. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. In addition, further evidence for the purity and stoichiometry of the product was obtained by XPS (X-ray photoelectron spectroscopy) spectrum.  相似文献   

14.
Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 μm to 1.65 μm were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively.  相似文献   

15.
We report a simple soft chemical method for the synthesis of ZnS nanoparticles using varying concentration of cationic surfactant CTAB and examine its surface properties. Powder X-ray diffraction, UV-vis spectroscopy, photoluminescence spectroscopy, selective area electron diffraction, and transmission electron microscopy are used to characterize the as prepared ZnS nanoparticles. XRD and TEM measurements show the size of polydispersed ZnS nanoparticles is in the range of 2-5 nm with cubic phase structure. The photoluminescence spectrum of ZnS nanoparticles exhibits four fluorescence emission peaks centered at 387 nm, 412 nm, 489 nm and 528 nm showing the application potential for the optical devices. In Raman spectra of ZnS nanoparticles, the modes around 320, 615 and 700 cm−1 are observed.  相似文献   

16.
Pd-functionalized ZnS nanorods were prepared for use as gas sensors. Scanning electron microscopy revealed the diameters and lengths of the nanorods ranging from 30 to 80 nm and from 2 to 5 μm, respectively. The diameter of Pd nanoparticles ranged from 2 to 5 nm. Transmission electron microscopy revealed that ZnS nanorods and Pd nanoparticles were monocrystalline and amorphous, respectively. The responses of multiple networked ZnS nanorods sensors to 1–5 ppm NO2 were increased substantially by a combination of Pd functionalization and UV irradiation. Pristine ZnS nanorod sensors at room temperature in the dark showed a response (∼100%) almost independent of NO2 concentration in a NO2 concentration range of 1–5 ppm. Pristine ZnS nanorod sensors showed enhanced responses of 214–603% to 1–5 ppm NO2 at room temperature under UV illumination. Pd-functionalized ZnS nanorods sensors showed further enhanced responses of 355–1511% to 1–5 ppm NO2 at room temperature under UV illumination. The NO2 gas sensing mechanism of the Pd-functionalized ZnS nanorods sensors under UV illumination is discussed in depth.  相似文献   

17.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

18.
Novel ZnO tetrapod and multipod nanostructures were successfully synthesized in bulk quantity through thermal evaporation method. The morphologies and structures of the ZnO nanostructures were characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscopy. The results revealed that the ZnO nanostructures consisted of tetrapods and multipods with tower-like legs. The ZnO nanostructures were of high purity and were well crystallized with wurtzite structure. The preferred growth direction of legs was found to be the [0 0 0 1] direction. Possible growth mechanisms were proposed for the formation of the ZnO nanostructures. Room temperature photoluminescence (PL) spectra showed that the as-synthesized ZnO nanostructures had a strong green emission centered at 495 nm and a weak ultraviolet emission at 383 nm. Raman spectroscopy was also adopted to explore the structural quality of the ZnO nanostructures.  相似文献   

19.
A new route to obtain metal oxide nanotubes is presented: an inorganic coordination complex precursor containing the metal ions and impregnated into alumina membrane templates yield hollow tubular nanostructures of LaNiO3 by calcination at 600 °C as characterized by powder X-ray diffraction (XRD). Scanning electron microscopy (SEM) shows that the resulting nanotubes have 200 nm in diameter in good agreement with the template pore. Transmission electron microscopy (TEM) and dark field transmission electron microscopy (DF-TEM) show that the nanotubes with 10-20 nm walls and internal separations are composed of 3-5 nm crystals.  相似文献   

20.
A novel method was applied to prepare β-Ga2O3 nanorods. In this method, β-Ga2O3 nanorods have been successfully synthesized on Si(1 1 1) substrates through annealing sputtered Ga2O3/Mo films under flowing ammonia at 950 °C in a quartz tube. The as-synthesized nanorods are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The results show that the nanorod is single-crystalline Ga2O3 with monoclinic structure. The β-Ga2O3 nanorods are straight and smooth with diameters in the range of 200-300 nm and lengths typically up to several micrometers. The growth process of the β-Ga2O3 nanorods is probably dominated by conventional vapor-solid (VS) mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号