首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Study on the silica hollow spheres by experiment and molecular simulation   总被引:2,自引:0,他引:2  
This paper presents the synthesis, characterization and molecular simulation of the silica hollow spheres (SHSs). The SHSs have been prepared using a double-template method, in which the calcium carbonate nanoparticles (CaCO3) serve as core templates and the cetyltrimethyl-ammonium bromide (CTAB) as wall structure-directing agents. The TEM, XRD, and nitrogen adsorption have been employed to characterize morphologies and structures of the SHSs. The experimental results indicate that the as-prepared sample has an average external diameter of about 85 nm and has occurrence of disordered mesopores in the walls. In the simulation, the SHSs have been modeled as cylindrical pore with pore size distribution according to the experimental data. A combined method of grand canonical Monte Carlo (GCMC) simulation and statistics integral equation (SIE) has been carried out to determine the pore size distribution (PSD) of the SHSs based on the experimental adsorption data of nitrogen at 77 K. The results show that the PSD simulated data are in a good agreement with the experiment, which means that the proposed model for the SHSs is reliable and the combined method of GCMC and SIE is powerful for evaluation of the PSD of the silica hollow spheres.  相似文献   

2.
Polystyrene/silica nanoparticles were prepared by radical polymerization of silica nanoparticles possessing vinyl groups and styrene with benzoyl peroxide. The resulting vinyl silica nanoparticles, polystyrene/silica nanoparticles were characterized by means of Fourier transformation infrared spectroscopy, scanning electron microscopy and UV-vis absorption spectroscopy. The results indicated that polystyrene had been successfully grafted onto vinyl silica nanoparticles via covalent bond. The morphological structure of polystyrene/silica nanoparticles film, investigated by scanning electron microscopy, showed a characteristic rough structure. Surface wetting properties of the polystyrene/silica nanoparticles film were evaluated by measuring water contact angle and the sliding angle using a contact angle goniometer, which were measured to be 159° and 2°, respectively. The excellent superhydrophobic property enlarges potential applications of the superhydrophobic surfaces.  相似文献   

3.
Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy.  相似文献   

4.
Silver-decorated silica spheres of submicrometer-sized silica spheres with a core-shell structure were obtained based on a seed-mediated growth process, where silver nanoparticles were firstly formed from reducing Ag+ to Ag0 in N,N-dimethylformamide (DMF) in the presence of poly(vinylpyrrolidone) (PVP) as protective agent under ultrasound irradiation, followed by the growth of silver shell served silver nanoparticles as nucleation sites and formaldehyde as reducer. The results revealed that the terms of PVP addition and ultrasonic surroundings had great influence on the fabrication of silver seeds.  相似文献   

5.
《Surface Science Reports》2014,69(2-3):132-158
There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications.  相似文献   

6.
表面增强能量转移效应的研究   总被引:5,自引:4,他引:1  
薛军 《光子学报》2004,33(2):195-199
通过分析2、2′菁染料水溶液、银胶体以及2、2′菁染料吸附于银胶表面时的吸收光谱得知,2、2′菁染料吸附于银胶表面时,有J聚集体出现,通过分析基频及高阶线性Raman光谱,证实了一些低波数的Raman信号是由J聚集体产生的,从而进一步证实了吸附于银胶表面的2、2′菁染料以单体和J聚集体形式共存.同时,由吸收光谱还可以看出,2、2′菁染料分子及其J聚集体分子的吸收带都处于银胶吸收带的半高宽范围内,满足共振条件,当用不同激发波长(514.5 nm和488 nm)的光激发吸附于银胶表面的2、2′菁染料时,观察到了J聚集体的敏化荧光,而用此激发光激发2、2′菁染料水溶液时,就没有观察到J聚集体的敏化荧光,从而说明了银胶表面的存在,加速了单体2、2′菁染料分子与其J聚集体分子之间的能量转移速率.  相似文献   

7.
Superparamagnetic silica-coated magnetite (Fe3O4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Then silica was coated on the Fe3O4 nanoparticles using a sol–gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu2+, the magnetic silica nanoparticles with immobilized Cu2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.  相似文献   

8.
Multifunctional core-shell nanocomposites with a magnetic core and a silica shell doped with lanthanide chelate have been prepared by a simple method. First, citric acid-modified magnetite nanoparticles were synthesized by a chemical coprecipitation method. Then the magnetite nanoparticles were coated with silica shells doped with terbium (Tb3+) complex by a modified Stöber method based on hydrolyzing and condensation of tetraethyl orthosilicate (TEOS) and a silane precursor. These multifunctional nanocomposites are potentially useful in a variety of biological areas such as bio-imaging, bio-labeling and bioassays because they can be simultaneously manipulated with an external magnetic field and exhibit unique phosphorescence properties.  相似文献   

9.
在荧光材料中掺杂合适的磷光敏化剂,可以大大提高荧光有机电致发光器件(OLED)的效率。选择磷光材料知fac-tris(2-phenylpyridinato-N,C^2′)iridium(Ⅲ)(Ir(ppy)3)分别与荧光材料4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl(DCJTB)、5,6,11,12,-tetraphenylnaphthacene(Rubrene)掺杂作为发光层,当掺杂质量比合适时,磷光材料的发光消失,得到了纯正的荧光材料的发光。同时,对磷光材料的敏化作用及发光机制进行了分析,比较了Ir(ppy)3对两种不同荧光材料的敏化作用强弱,发现Ir(ppy)3对荧光材料Rubrene的敏化作用更强。对影响敏化作用的因素进行了分析,推测其原因与磷光材料和荧光材料的相容性质有关。  相似文献   

10.
首次研究了吖啶橙 罗丹明B二聚体能量转移体系作为荧光探针用于DNA的测定 ,并对其机理进行了探讨。用于鲱鱼精DNA和小牛胸腺DNA的测定 ,线性范围分别为 0 33~ 1 33mg·L- 1 ,0 33~ 3 33mg·L- 1 ,检测限分别为 1 6 3× 10 - 3mg·L- 1 ,1 5 2× 10 - 3mg·L- 1 。对 1 0 0mg·L- 1 鲱鱼精DNA和小牛胸腺DNA的测定 ,相对标准偏差分别为 2 4 %和 2 0 %。  相似文献   

11.
Inorganic-organic hybrid titania-based nanoparticles covalently bound to a fluorescent Eu3+ chelate of 4,4′-bis(1′′,1′′,1′′,2′′,2′′,3′′,3′′-heptafluoro-4′′,6′′-hexanedion-6′′-yl)chlorosulfo-o-terphenyl (BHHCT-Eu3+) were synthesized by a sol-gel technique. A conjugate of BHHCT with 3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (APTS) was used as a precursor for the nanoparticle preparation and monodisperse nanoparticles consisting of titania network and silica sub-network covalently bound to the Eu3+ chelate were prepared by the copolymerization of APTS-BHHCT conjugate, titanium tetraisopropoxide (TTIP) and free APTS in EuCl3 water-alcohol solution. The effects of reaction conditions on size and fluorescence lifetime of the nanoparticles were investigated. The characterizations by transmission electron microscopy and fluorometric methods indicate that the nanoparticles are near spherical and strongly fluorescent having a fluorescence quantum yield of 11.6% and a long fluorescence lifetime of ∼0.4 ms. The direct-introduced amino groups on the nanoparticle's surface by using free APTS in nanoparticle preparation facilitated the biolabeling process of the nanoparticles. The nanoparticle-labeled streptavidin (SA) was prepared and used in a sandwich-type time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) by using a 96-well microtiter plate as the solid phase carrier. The method gives a detection limit of 66 pg/ml for the PSA assay.  相似文献   

12.
We report on a direct measurement of adhesion between abrasive nanoparticles of irregular shape, which are used in semiconductor industry in the process of Chemical-Mechanical Planarization (CMP), and silica surface. The adhesion of ceria and silica nanoparticles to silica surface is measured in multiple chemistries of different CMP slurries using a specially developed atomic force microscopy (AFM) method. Using this method, we study the influence of adhesion on the main parameters of CMP, removal rate and defectivity, scratches. While being plausible to expect correlation between these parameters and adhesion, it has not been systematically studied as of yet. We observed direct correlation between adhesion and removal rate. Comparing the measured defectivity and adhesion, we observe the presence of some correlation between these parameters. We conclude that both adhesion and shape of abrasive particles influence defectivity, micro-scratches. Direct measurements of the adhesion between abrasive nano-particles and surface can be used in the screening of new slurries as well as various modeling related to wearing of the surfaces.  相似文献   

13.
Novel near infrared (NIR) phosphors CaxSr1−xS:Ce3+,Nd3+ were synthesized by a solid state reaction. The NIR emission was realized through an efficient absorption by the allowed 4f-5d transition of Ce3+ and efficient energy transfer to Nd3+ via well-matched energy levels. Ce3+ and Nd3+ content in CaS/SrS was optimized. It was found that CaS:Ce3+,Nd3+ gave much stronger NIR emission than that of SrS:Ce3+,Nd3+. Further studies on CaxSr1−xS:Ce3+,Nd3+ indicated that both visible emission of Ce3+ and NIR emission of Nd3+ were observably affected by Ca/Sr ratio. The energy transfer efficiency, which can be estimated from fluorescence lifetime of Ce3+, increased from 52% to 74% for the CaxSr1−xS:Ce3+,Nd3+ (x=0 to 1) series, accompanied with a shift of maximal emission wavelength of Ce3+ from 482 to 505 nm. The results showed that overlap between emission spectrum of Ce3+ and excitation spectrum of Nd3+ plays an important role in the energy transfer efficiency, and Ce3+ emitting in green or blue-greenish region sensitized the Nd3+ NIR fluorescence emission more efficiently than that in blue region.  相似文献   

14.
Using first-principles calculations, we study the structural, mechanical and electronic properties of the layered silica nanostructures built on base of silica bilayers consisting of four- and six-membered Si–O ring (4 MR and 6 MR) units. These silica nanostructures have high stability and good flexibility comparable to graphene and can serve as a promising precursor for the fabrication of well-ordered silica nanotubes. The porous structure and wide band gap of the silica nanomaterials may find applications in gas separation, slow-release microcapsules, and catalyst supports.  相似文献   

15.
In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images. Silica coated ZnO nanoparticles demonstrated a significant inhibition of photocatalytic activity against photodegradation of methylene blue dye in aqueous solution. The effects of silica coating on the UV blocking property of ZnO nanoparticles were also studied.  相似文献   

16.
The fluorescence property of Sm(DBM)3phen- (DBM—dibenzoylmethide, phen—1,10-phenanthroline) and Tb(DBM)3phen-co-doped poly(methyl methacrylate) (PMMA) was investigated. The excitation, emission spectra and fluorescence lifetime of the co-doped samples were examined. In the co-doped samples, the luminescence intensities of Sm3+ enhance with an increase of the Tb(DBM)3phen content and with a decrease of the Sm(DBM)3phen content. The reason for the fluorescence enhancement effect in the co-doped polymer is the intermolecular energy transfer. To give a vivid picture for this co-doped system, a model for the fluorescence enhancement of Sm(DBM)3phen- and Tb(DBM)3phen-co-doped PMMA is presented.  相似文献   

17.
Conformational transitions in a 4-way DNA junction when titrated with ionic solutions are studied using time-resolved fluorescence resonance energy transfer. Parameters characterising the transition in terms of critical ion concentration (c 1/2) and the Hill coefficient for ion binding are obtained by fitting a simple two-state model using steady-state spectra. Data obtained from a fluorescence lifetime plate reader and analysed by fitting a single exponential to donor fluorescence lifetime decays are shown to be in good agreement with the parameters obtained from steady-state measurements. Fluorescence lifetimes, however, offer advantages, particularly in being independent of fluorophore concentration, output intensity, inhomogeneity in the excitation source and output wavelength. We demonstrate preliminary FRET-FLIM images of DNA junction solutions obtained using a picosecond gated CCD which are in agreement with results from a fluorescence lifetime plate reader. The results suggest that time-resolved FRET-FLIM is sensitive to subtle structural changes and may be useful in assays based on 4-way DNA junctions.  相似文献   

18.
Pyro-metallurgical copper slag (CS) waste was used as the source material for ultrasound (US) silica extraction under acidification processes with 26 kHz with HCl, HNO3, and H2SO4 at different concentrations at 100, 300, and 600 W. During acidifying extraction processes, US irradiation inhibited silica gel formation under acidic conditions, especially at lower acid concentrations of less than 6 M, whereas a lack of US irradiation led to enhanced gelation. When US stopped, gelation occurred to a considerable degree, suggesting that the gel particle size distribution was aggregated in the 3–400 µm size range. However, with US, the size was mainly in the 1–10 µm range. Results of elemental analysis indicated that US treatment decreased the co-precipitation of other metal ions such as Fe, Cu, and Al sourced from CS for lower acidic medium, whereas the higher concentration medium accelerated silica gelation and the co-precipitation of other metals. With acids of HCl and HNO3, and H2SO4, the gelations were less likely to occur at 6 M and 3 M during US irradiation, but acidic extraction without US was efficient for silica gelation and co-precipitation of other metals in the purified silica. The silica extraction yield with H2SO4 concentration of 3 M was 80% with 0.04% of Fe, whereas the silica product from HCl 6 M had a 90% extraction yield with only 0.08% of Fe impurity. In contrast, even though the non-US system of HCl 6 M had a higher yield at 96%, the final product had 0.5% Fe impurity, which was much higher than the US system. Consequently, the US extraction process was quite noticeable for silica recovery from CS waste.  相似文献   

19.
852.3 nm激光线共振激发Cs蒸气的荧光光谱   总被引:2,自引:2,他引:0  
研究了Cs蒸气被单模半导体激光器的852.3 nm线激发产生的荧光光谱。由Cs,Cs2的荧光及其强度确定了在受激Cs-Cs2系统中的若干碰撞和辐射过程。高位态原子线是由Cs(6P3/2)+ Cs(6P3/2)到Cs(6D,8S)的碰撞能量合并形成的,Cs2(B 1u)带则由Cs(6P)+Cs2(X 1Σ+g)碰撞转移产生。通过激发转移、能量碰撞合并和Cs2-Cs碰撞传能研究了6 2P原子的精细结构混合,得到了6P3/2→6P1/2碰撞转移速率系数是(5.2±2.1)×10-11 cm3·s-1,给出了过程Cs2(B 1∏u)+Cs(6S)→Cs2(X 1Σ+g)+Cs(6P1/2)的速率系数是(1.0±0.4)×10-9 cm3·s-1。  相似文献   

20.
光系统Ⅱ核心复合物激发能传递光谱特性   总被引:4,自引:4,他引:0  
采用ICCD皮秒、飞秒扫描成象光谱装置研究PSⅡ核心复合物激发能传递光谱特性,获得的PSⅡ积分荧光谱从661nm到693nm,峰值波长680nm,有四个组分谱,谱的峰值分别为670nm、676nm、681nm、686nm.CP43有Chla660661、Chla669670和Chla682686三个光谱组分;CP47有Chla660661、Chla669670和Chla680681三个光谱组分.根据吸收光谱和组分光谱分析,PSⅡ核心天线各自有三种不同状态的Chla分子,它们是CP43-Chla660661、CP43-Chla669670、CP43-Chla682686与CP47-Chla660661、CP47-Chla669670、CP47-Chla680681.通过四个光谱组分分析了PSⅡ核心复合物激发能传递的光谱特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号