首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

2.
Eu3+ and Sm3+ activated M2SiO4 (M=Ba, Sr and Ca) red-emitting phosphors were synthesized by a solid state reaction. The results of XRD and SEM measurements show that the samples are single phase and have irregular shape. The excitation and emission spectra indicate that these phosphors were effectively excited by ultraviolet (395 nm) and blue (466 nm) light and exhibited red performance. The charge compensator R+ (R+=Li+, Na+ and K+) injecting into the host efficiently enhanced the luminescence intensity of the M2SiO4: Eu3+ and M2SiO4: Sm3+ phosphors. The emission intensity of M2SiO4: Eu3+ and Sm3+ doping Li+ were higher than that of Na+ or K+.  相似文献   

3.
(Ca1 − x, Srx)Al2Si2O8:0.06Ce3+, M+ (M+ = Li+, Na+, K+) phosphors have been prepared by conventional solid-state reaction method. The structural and optical properties of the phosphors were characterized by X-ray diffraction (XRD) technique and spectrophotometer, respectively. A regular variation was found among the XRD patterns of (Ca1 − x, Srx)Al2Si2O8:0.06Ce3+ phosphors based on the changing of Sr content. With the increase of Sr content, the maximum of emission band presented slight blue shifts (~ 15 nm). The luminescence intensity of CaAl2Si2O8:0.06Ce3+ and SrAl2Si2O8:0.06Ce3+ were significantly enhanced when K+ and Li+ were incorporated, respectively.  相似文献   

4.
The red-emitting Ca0.54Sr0.16Eu0.08Gd0.12(MoO4)0.2(WO4)0.8 phosphor is improved in the emission charateristics by charge compensation, of which chromaticity coordinates (CIE) are x=0.66 and y=0.33. Three approaches to charge compensation are investigated, namely (a) 3Ca2+/Sr2+→2Eu3+/Gd3++vacancy, (b) 2Ca2+/Sr2+→Eu3+/Gd3++M+(M+ is a monovalent cation like Li+, Na+ and K+ employed as a charge compensator) and (c) Ca2+/Sr2+→Eu3+/Gd3++N (N is a monovalent anion like F, Cl, Br and I employed as charge compensation ions). Through photoluminescent spectra analyzing the radiative and non-radiative relaxation mechanisms of luminescent system are obtained. Under 20 mA forward-bias current, one red-emitting LED is made by combining 390-405 nm-emitting LED chip and the phosphor. The red-emitting phosphor has broad prospects in LED application field.  相似文献   

5.
Samples of SrAl2O4:Eu3+ doped with B3+ and SrAl2O4:Eu3+ co-doped with B3+ and Li+ have been prepared by the solid-reaction method. The influence of B3+ and Li+ contents on luminescence property has been investigated. It is found that the substitution of B3+ for Al3+ greatly improves red emission intensity at 591, 615 and 701 nm. The dopant Li+ as charge compensator in SrAl2O4:Eu3+, B3+ can further enhance luminescence intensity. The strongest red emission is obtained in the Sr(Al1.9, B0.1)O4:Eu0.023+, Li+0.02 sample. The developed phosphors can be efficiently excited by ultraviolet (UV) light from 350 to 480 nm, which indicates that B3+ and Li+ co-doped SrAl2O4:Eu3+ is a good candidate phosphor applied in solid-state lighting in conjunction with white UV light-emitting diodes (LEDs).  相似文献   

6.
Divalent europium-activated strontium orthosilicate Sr2SiO4:Eu2+ and Mg0.1Sr1.9SiO4:Eu2+ phosphors were synthesized through the solid-state reaction technique. Their luminescent properties under ultraviolet excitation were investigated. The X-ray diffraction (XRD) results show that these phosphors are of α′-Sr2SiO4 phase with a trace of β-Sr2SiO4. Doping of Eu2+ ion into the crystal lattice results in the lattice constant being expended, while Mg2+ makes the lattice constant shrinking. A solid solution with the same crystal structure is formed when Eu2+ or Mg2+ substitutes part of Sr2+ ions and occupies the same lattice sites. The Sr2SiO4:Eu2+ phosphors show two emission spectra peaked at 535 and 473 nm originated from the 5d-4f transition of Eu2+ ion doped in two different Sr2+ sites in the host lattice. By substitution of 0.1 mol of Sr2+ with Mg2+, these two emission bands are tuned to be in the blue and yellow region (459 and 564 nm for Mg0.1Sr1.88SiO4:Eu0.02), respectively. The tuning effect is discussed. With a combination of the blue and yellow emission bands the phosphors show white color, indicating that these phosphors may become promising phosphor candidates for white light-emitting diodes (LEDs).  相似文献   

7.
Spherical SiO2 particles have been coated with Zn2SiO4:Eu3+ phosphor layers by a Pechini sol-gel process. The microstructure and luminescent properties of the obtained Zn2SiO4:Eu3+@SiO2 particles were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and lifetime. The results demonstrate that the Zn2SiO4:Eu3+@SiO2 particles, which have regular and uniform spherical morphology, emitted an intensive red light emission at 613 nm under excitation at 395 nm. Besides, the effects of the Eu3+ concentration, annealing temperature and charge compensators of Li+ ions on the PL emission intensities were investigated in detail.  相似文献   

8.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

9.
采用高温固相法制备了Ca2SiO4:Dy3+发光材料.在365nm紫外光激发下,测得Ca2SiO4:Dy3+材料的发射光谱为一多峰宽谱,主峰分别位于486nm,575nm和665nm处;监测575nm发射峰,测得材料的激发光谱为一多峰宽谱,主峰分别位于331nm,361nm,371nm,397nm,435nm,461nm和478nm处.研究了Dy3+掺杂浓度对Ca2SiO4:Dy3+材料发射光谱及发光强度的影响,结果显示,随Dy3+浓度的增大,黄、蓝发射峰强度比(Y/B)逐渐增大,利用Judd-Ofelt理论解释了其原因;随Dy3+浓度的增大,Ca2SiO4:Dy3+材料发光强度先增大,在Dy3+浓度为4 mol%时到达峰值,而后减小,根据Dexter理论其浓度猝灭机理为电偶极-电偶极相互作用.研究了电荷补偿剂Li+,Na+和K+对Ca2SiO4:Dy3+材料发射光谱的影响,结果显示,不同电荷补偿剂下,随电荷补偿剂掺杂浓度的增大,Ca2SiO4:Dy3+材料发射光谱强度的演化趋势相同,即Ca2SiO4:Dy3+材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li+,Na+和K+时,浓度分别为4mol%,4mol%和3mol%. 关键词: 白光LED 2SiO4:Dy3+')" href="#">Ca2SiO4:Dy3+ 发光特性 电荷补偿  相似文献   

10.
A yellow phosphor, Sr3SiO5:Eu2+, was synthesized by a high temperature solid-state method. Sr3SiO5:Eu2+ exhibits a single yellow emission under the blue radiation excitation. However, Sr3SiO5:Eu2+ shows a two-peak emission under the ultraviolet radiation excitation when Eu2+ doping content is less than 0.01 mol. Moreover, the blue emission disappears and the yellow emission reaches the peak value when Eu2+ doping content is 0.01 mol. Namely, the energy transfer takes place between the Eu2+ activators, which is located at two different crystallographic sites in the Sr3SiO5. And the energy transfer mechanism is the dipole-dipole interaction.  相似文献   

11.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

12.
Shi LL  Li CY  Su Q 《Journal of fluorescence》2011,21(4):1461-1466
The room-temperature luminescent emission characteristics of Sr2CeO4:M+ and Sr2CeO4:Eu3+,M+ (M+ = Li+, Na+, K+) have been investigated under UV excitation. By introducing appropriate alkali metal cations dopants (Li+, Na+, K+) into the crystalline lattice, not only emission color of the blue-white-emitting Sr2CeO4 doped with low Eu3+ content can be tuned to green, but also the red emission intensity of Sr2CeO4 doped with high Eu3+ concentration is strengthened significantly. The relevant mechanisms have been elucidated in detail.  相似文献   

13.
SiO2@Gd2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by 5D0-7F2 red emission at 613 nm) under the excitation of 307 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

14.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

15.
The effect of K+ ions on GdTaO4:Eu3+ thin-film phosphors was investigated in order to improve their luminescent properties. The GdTaO4:Eu0.1, Kx thin films were synthesized by sol-gel process, and characterized through measuring their microstructure and luminescence. The results indicated that photoluminescence (PL) intensity of GdTaO4:Eu3+ film was improved remarkably by K doping. There were two maxima in the curve of PL intensity against K+ dopant concentration, where one was improved up to 2.1 times at x = 0.001 and the other was enhanced up to 2.7 times at x = 0.05. The first maximum was regarded as the alteration of the local environment surrounding the Eu3+ activator by incorporation of K+ ions, and the second maximum was due to the flux effect. Additionally, the luminescence increased with the increase of firing temperature from 800 °C to 1200 °C.  相似文献   

16.
A phosphor Tb3+-doped ZnWO4 (ZWO:Tb) phosphors were prepared by a hydrothermal method. X-ray powder diffraction (XRD) analysis revealed that the as-obtained sample is pure ZnWO4 phase. The excitation and emission spectra indicated that the phosphor could be well excited by ultraviolet light (272 nm) and emit blue light at about 491 nm and green light at about 545 nm. Significant energy transfer from WO42− groups to Tb3+ ions has been observed. Two approaches to charge compensation are investigated: (a) 2Zn2+ = Tb3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Zn2+ = 2Tb3+ + vacancy. Compared with two charge compensation patterns in the ZnWO4:Tb3+, it has been found that ZnWO4:Tb3+ phosphors used Li+ as charge compensation show greatly enhanced bluish-green emission under 272 nm excitation.  相似文献   

17.
A blue emitting phosphor of the triclinic BaCa2Si3O9:Eu2+ was prepared by the combustion-assisted synthesis method and an efficient blue emission ranging from the ultraviolet to visible was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometry (XRD), respectively. The emission spectrum shows a single intensive band centered at 445 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum is a broad extending from 260 to 450 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu2+ in BaCa2Si3O9:Eu2+ phosphor is about 0.05 mol. The corresponding concentration quenching mechanism is verified to be a dipole-dipole interaction. The CIE of the optimized sample Ba0.95Ca2Si3O9:Eu0.052+ was (x, y)=(0.164, 0.111). The result indicates that BaCa2Si3O9:Eu2+ can be potentially useful as a UV radiation-converting phosphor for white light-emitting diodes (LEDs).  相似文献   

18.
Jidi Liu  Xue Yu  Jie Li 《Journal of luminescence》2010,130(11):2171-2174
A series of green phosphors Zn1.92−2xYxLixSiO4:0.08Mn2+ (0≤x≤0.03) were prepared by solid-state synthesis method. Phase and lattice parameters of the synthesized phosphors were characterized by powder X-ray diffractometer (XRD) and the co-doped effects of Y3+/Li+ upon emission intensity and decay time were investigated under 147 nm excitation. The results indicate that the co-doping of Y3+/Li+ has favorable influence on the photoluminescence properties of Zn2SiO4:Mn2+, and the optimal photoluminescence intensity of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 103% of that of commercial phosphor when the doping concentration of Y3+/Li+ is 0.01 mol. Additionally, the decay time of phosphor is much shortened and the decay time of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 3.39 ms, shorter by 1.83 ms than that of commercial product after Y3+/Li+ co-doping.  相似文献   

19.
Nanocrystalline Y2Si2O7:Eu phosphor with an average size about 60 nm is easily prepared using silica aerogel as raw material under ultrasonic irradiation and annealing temperature at 300-600 °C and this nanocrystalline decomposes into Y2O3:Eu and silica by heat treatment at 700-900 °C. The excitation broad band centered at 283 and 254 nm results from Eu3+ substituting for Y3+ in Y2Si2O7 and Y2O3/SiO2, respectively. Compared with Y2O3:Eu/SiO2 crystalline, the PL excitation and emission peaks of Y2Si2O7:Eu nanocrystalline red-shift and lead to the enhance of its luminescence intensity due to the different chemical surroundings of Eu3+ in above nanocrystallines. The decrease of PL intensity may be ascribed to quenching effect resulting from more defects in Y2O3:Eu/SiO2 crystalline.  相似文献   

20.
A novel blue-emitting long-lasting phosphor Sr3Al10SiO20:Eu2+,Ho3+ is prepared by the conventional high-temperature solid-state technique and their luminescent properties are investigated. XRD, photoluminescence (PL) and thermoluminescence (TL) are used to characterize the synthesized phosphors. These phosphors are well crystallized by calcinations at 1500-1600 °C for 3 h. The phosphor emits blue light and shows long-lasting phosphorescence after it is excited with 254/365 nm ultraviolet light. TL curves reveal the introduction of Ho3+ ions into the Sr3Al10SiO20:Eu2+ host produces a highly dense trap level at appropriate depth, which is the origin of the long-lasting phosphorescence in this kind of material. The long-lasting phosphorescence lasts for nearly 6 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). All the results indicate that this phosphor has promising potential practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号