首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Nitrogen-doped ZnO sample has been annealed in O2 ambient at high temperature (1000 °C) to improve its photoluminescence property. Low-temperature photoluminescence spectra of the sample are dominated by three near-band-edge emissions at 3.377, 3.362, and 3.332 eV, which are ascribed to free exciton emission (FXA), and neutral donor-bound exciton (D0X), and its two-electron satellite (TES), respectively. With increasing temperature in low temperature region, the intensity of FXA increases and the green band (GB) shows a negative thermal quenching effect resulting from thermal dissociation of D0X with more free excitons and neutral donors formed. The doublet structure with energy space ∼30 meV and repeated separation of longitudinal-optical phonon energy of 72 meV are observed in GB at low temperatures. The temperature independent energy position of GB indicates a typical recombination characteristic within strongly localized complexes. The doublet structures are considered to originate from the ground and exited states of shallow donors recombining with deep acceptors such as zinc vacancies.  相似文献   

2.
Uniform and flat single crystal ZnO:P nanobelts (NBs) were fabricated on Si (1 0 0) substrates by the thermal evaporation method. The growth process, free-catalyst self-assembly vapor-solid (V-S) mechanism, was described and investigated deeply in terms of thermodynamics and kinetics. Then, the photoluminescence (PL) properties of ZnO NBs were studied in a temperature range from 10 to 270 K. At 10 K the recombination of acceptor-bound exciton (A0X) was predominant in the PL spectrum, and was attributed to the transition of PZn−2VZn complex bound exciton. The active energy of A0X and acceptor binding energy were calculated to be 17.2 and 172 meV, respectively. The calculated acceptor binding energy of P doped ZnO nanostructure is in good agreement with that of P doped ZnO film.  相似文献   

3.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

4.
The paper deals with synthesis of Sb doped ZnO nanowire by considering Si coated with Sb and Au as substrate using carbothermal evaporation method. The horizontally oriented Sb doped ZnO nanowires with a diameter of 1 μm synthesized at 900 °C, which is quite high as compared to the Pure ZnO nanowires generated without the influence of Sb at 900 °C. The nanowire synthesized at 900 °C showed a measurable lower angle of about 0.06° from XRD and suppression of A1T and E1(L0) modes in Raman spectroscopic, this confirms the incorporation of Sb in ZnO lattice. The strong exciton emission and weak deep-level emission from room temperature PL and Strong emission attributed to the radiant recombination from neutral-acceptor-bound exciton (A0X) peak accompanied by two strong and broad emission of donor acceptor pair (DAP) from low temperature PL, this confirms the use of Sb as an acceptor for ZnO.  相似文献   

5.
We have investigated the optical properties of InAs/GaAs self-assembled quantum dots (QDs), grown at 500 °C using a low growth rate (0.014 ML/s), growth interruptions and a two-stage capping process. The samples exhibited large-size dots with densities in the range (3-4.5) × 109 cm−2. Macro-photoluminescence (macro-PL) measurements revealed the presence of five electronic sub-bands in the dots, with the ground state (GS) emission exhibiting a linewidth of ∼70 meV. Because of the dots large size and composition dispersions, associated with the growth method, it was possible to resolve single dots emissions using micro-PL (μ-PL) excitation in the barrier layers of the as-grown samples. The sharp PL lines were detected 60-140 meV above the GS peak energy. High-resolution resonant optical excitation of the dots PL evidenced that these fine lines originate from exciton complexes confined to the GS of individual dots. Non-resonant power dependence μ-PL spectroscopy results further confirmed the occurrence of both single exciton (X) and biexciton (XX) radiative recombinations. Finally, with increasing lattice temperature up to 95 K, PL emissions from most of these nanostructures suffered the usual thermal quenching, with activation energies (Ea) ranging between 12 and 41 meV. The relatively small values of Ea suggest that the growth technique implemented here favors the formation of defects centers in the vicinity of the QDs.  相似文献   

6.
The optical properties of N-doped ZnO films grown by pulsed laser deposition are examined for which zinc nitride is used as the source of nitrogen. The motivation for this study is to determine if nitrogen-related acceptor state formation can be achieved in ZnO films using Zn3N2 doping in the ablation target. The films were deposited in oxygen or nitrogen on c-plane sapphire. Photoluminescence measurements at 20 K reveal a 3.31 eV acceptor-bound exciton emission due to nitrogen substitution on the oxygen site, donor-acceptor pair emission at 3.23 ± 1 eV and free electron-acceptor at 3.27 eV. The binding energy of the N-related acceptor is estimated to be in the range of 170-15 meV. While the as-deposited films were n-type, thermal annealing in oxygen yielded insulating behavior, consistent with compensating acceptor states.  相似文献   

7.
The ZnO:N films are prepared by a wet chemical method. The temperature-dependent photoluminescence (PL) is used to investigate those ZnO: N films. Due to the introduction of nitrogen atoms into ZnO film, another phase appears in the ZnO film, which can release the stress and improve the film quality. As a result, a neutral donor-bound exciton (D0X) emission peak is shown in low temperature PL spectrum. With the increasing temperature, the D0X line gradually loses its intensity and shifts to 3.30 eV, which is consistent with the well-known conversion from bound exciton to free exciton at elevated temperatures. Then, due to the thermal quenching effect, the D0X line vanishes in room temperature. In addition, no shift is shown in the location of visible band emission and only the intensity decreases with the increasing temperature.  相似文献   

8.
The photoluminescence properties of individual ZnO nanorods, grown by atmospheric pressure metalorganic chemical vapor deposition (APMOCV) and chemical bath deposition (CBD) are investigated by means of temperature dependent micro-PL. It was found that the low temperature PL spectra are driven by neutral donor bound exciton emission D0X, peaked at 3.359 and 3.363 eV for APMOCVD and CBD ZnO nanorods, respectively. The temperature increase causes a red energy shift of the peaks and enhancement of the free excitonic emission (FX). The FX was found to dominate after 150 K for both samples. It was observed that while APMOCVD ZnO nanorods possess a constant low signal of visible deep level emission with temperature, the ZnO nanorods grown by CBD revealed the thermal activation of deep level emission (DLE) after 130 K. The resulting room temperature DLE was a wide band located at 420–550 nm. The PL properties of individual ZnO nanorods can be of importance for their forthcoming application in future optoelectronics and photonics.  相似文献   

9.
Photoluminescence (PL) of high quality GaN epitaxial layer grown on β-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an ‘S-like’ shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be ∼27.8±0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed ∼4.5±2×1017 cm−3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy.  相似文献   

10.
ZnO nanowall networks were grown on a Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (P-MBE) without using catalysts. Scanning electronic microscopy (FE-SEM) confirmed the formation of nanowalls with a thickness of about 10-20 nm. X-ray diffraction (XRD) showed that the ZnO nanowall networks were crystallized in a wurtzite structure with their height parallel to the 〈0 0 0 1〉 direction. Photoluminescence (PL) of the ZnO nanowall networks exhibited free excitons (FEs), donor-bound exciton (D0X), donor-acceptor pair (DAP), and free exciton to acceptor (FA) emissions. The growth mechanism of the ZnO nanowall networks was discussed, and their hydrogenation was also studied.  相似文献   

11.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

12.
Optical properties and temperature-dependent quenching behaviors of emission from undoped and Eu-doped ZnS nanowires (NWs) were characterized. Electron paramagnetic resonance measurements confirmed the presence of the dopant in valence state Eu2+. The 368 nm (3.37 eV) near-band-edge emission band associated with dissociation of a bound exciton was found to have an activation energy of 27.3 meV. A dopant-related transition was observed from both samples due to the incorporation of unintentional Au catalyst in the undoped NWs and of intentional Eu-dopant. These dopant-related transitions show large activation energy and appreciable amount of emission intensities above the room temperature. Both samples also exhibit surface-state-related transitions around 400 nm (3.046 eV) which have relatively smaller activation energies than the dopant-related transitions.  相似文献   

13.
The optical properties of ZnO grown on (1 0 0) GaAs substrate using metalorganic chemical vapor deposition are investigated by photoluminescence (PL) spectroscopy. Postgrowth annealing in nitrogen and oxygen was performed for different times and temperatures in order to incorporate As from the substrate into the ZnO thin films. The PL spectra of the samples annealed in different ambients reveal that the effect of As diffusion into the ZnO thin films is more pronounced when the annealing is performed in oxygen at 550 °C. The 11 K PL spectra show the appearance of a transition at ∼3.35 eV after annealing in oxygen at 550 °C for 1 h. A further increase in the annealing temperature leads to the disappearance of this line, while for annealing times longer than 2 h at 550 °C, it is no longer prominent. The increase in intensity of this new transition is also accompanied by the enhancement of radiative centers related to structural defects, such as the stacking fault-related transition at 3.31 eV and the Y-line. Temperature dependent PL illustrates the excitonic nature of the new transition at ∼3.35 eV, which is therefore assigned to (A0, X) transition, where the acceptor is possibly the 2VZn-AsZn complex, with an activation energy EA in the range of 160-240 meV. Furthermore, the enhancement of the radiative centers related to structural defects is regarded as evidence that As atoms tend to segregate in the vicinity of structural defects to relieve local strain.  相似文献   

14.
A series of Cr-doped ZnO micro-rod arrays were fabricated by a spray pyrolysis method. X-ray diffraction patterns of the samples showed that the undoped and Cr-doped ZnO microrods exhibit hexagonal crystal structure. Surface morphology analysis of the samples has revealed that pure ZnO sample has a hexagonal microrod morphology. From X-ray photoelectron spectroscopy studies, the Cr 2p3/2 binding energy is found to be 577.3 eV indicating that the electron binding energy of the Cr in ZnO is almost the same as the binding energy of Cr3+ states in Cr2O3. The optical band gap Eg decreases slightly from 3.26 to 3.15 eV with the increase of actual Cr molar fraction from x = 0.00 to 0.046 in ZnO. Photoluminescence studies at 10 K show that the incorporation of chromium leads to a relative increase of deep level band intensity. It was also observed that Cr doped samples clearly showed ferromagnetic behavior; however, 2.5 at.% Cr doped ZnO showed remnant magnetization higher than that of 1.1 at.% and 4.6 at.% Cr doped samples, while 4.6 at.% Cr doped ZnO samples had a coercive field higher than the other dopings.  相似文献   

15.
In this paper, ZnO/Zn0.9Mg0.1O single quantum well (SQW) structures were fabricated on c-plane sapphire (Al2O3) substrate by plasma-assisted molecular beam epitaxy (P-MBE). The photoluminescence (PL) peak of the SQW shifted from 3.31 to 3.37 eV as the well layer thickness was decreased from 6 to 2 nm. The spectral linewidth increases with temperature due to the scattering of excitons with acoustic and optical phonons. The transition energy of the localized exciton in the ZnO/Mg0.1Zn0.9O SQW with well width of 3 nm was found to be about 3.407 eV at 80 K, consistent with theoretical calculation. The first subband energies in the conduction and valence band were calculated to be 49 and 11 meV, respectively.  相似文献   

16.
GaSe single crystals were N-implanted along c-axis with ion beams of 1014 and 1016 ions/cm2 doses having energy values of 60 and 100 keV. The photoluminescence (PL) spectra of undoped and N-implanted GaSe crystals were measured at different temperatures. The PL intensity was observed to decrease with increasing implantation dose while the FWHM of the exciton peaks increased. In heavily doped crystals, due to the interaction with the radiation induced disorders, the wave vector selection rules are satisfied and an indirect exciton PL band is observed 36 meV below the direct exciton states.  相似文献   

17.
Zinc oxide (ZnO) thin films on R-plane sapphire substrates were grown by the sol–gel spin-coating method. The optical properties of the ZnO thin films were investigated using photoluminescence. In the UV range, the asymmetric near-band-edge emission was observed at 300 K, which consisted of two emissions at 3.338 and 3.279 eV. Eight peaks at 3.418, 3.402, 3.360, 3.288, 3.216, 3.145, 3.074, and 3.004 eV, which respectively correspond to the free exciton (FX), bound exciton, transverse optical (TO) phonon replica of FX recombination, and first-order longitudinal optical phonon replica of FX and the TO (1LO+TO), 2LO+TO, 3LO+TO, 4LO+TO, and 5LO+TO, were obtained at 12 K. From the temperature-dependent PL, it was found that the emission peaks at 3.338 and 3.279 eV corresponded to the FX and TO, respectively. The activation energy of the FX and TO emission peaks was found to be about 39.3 and 28.9 meV, respectively. The values of the fitting parameters of Varshni's empirical equation were α=4×10?3 eV/K and β=4.9×103 K, and the S factor of the ZnO thin films was 0.658. With increasing temperature, the exciton radiative lifetime of the FX and TO emissions increased. The temperature-dependent variation of the exciton radiative lifetime for the TO emission was slightly higher than that for the FX emission.  相似文献   

18.
ZnO based diluted magnetic semiconductor particles (ZnO:Co) have been grown using a hydrothermal method with good crystallinity. The atomic percentage of Co presented in the specimen is about 0.01. Based on the x-ray diffraction and high-resolution transition electron, Co is found to be incorporated into ZnO lattice without evidence of obvious Co precipitates. However, from photoluminescence (PL) spectra in the range of 1.94 -3.45 eV, a strong broad emission centered around 600 nm (2.07 eV) in the visible range as well as a relatively weak peak at 2.81 eV are observed, indicating the presence of Co impurities. Moreover, intrinsic emissions such as DOX suggest that at least some Co have been doped into ZnO lattice, substituting for Zn2+ ions. The PL results further confirm the substitution of Zn2+ ions by Co, which leads to the changes of the electronic band structures. Magnetism could be realized at room temperature for the ZnO:Co nanoparticles under our experimental conditions although with low coercivity. The field-cooled and zero-field-cooled curves can be explained as a result of competition between the ferromagnetic and the antiferromagnetic ordering in the ZnO:Co nanoparticles. Combining the results from PL and magnetism characterization, it is reasonable to think that both doped Co in the ZnO lattice and Co impurities contribute to magnetism in ZnO:Co nanoparticles at room temperature.  相似文献   

19.
Structural and optical properties of ZnO film by plasma-assisted MOCVD   总被引:2,自引:0,他引:2  
Wang  X.  Yang  S.  Wang  J.  Li  M.  Jiang  X.  Du  G.  Liu  X.  Chang  R.P.H. 《Optical and Quantum Electronics》2002,34(9):883-891
High quality ZnO film was deposited by plasma-assisted metal-organic chemical vapor deposition (MOCVD). We observed a dominant peak at 34.6° due to (0 0 2) ZnO, which indicated that the growth of ZnO film was strongly C-oriented. The full-width at half-maximum (FWHM) of the -rocking curve was 0.56° indicating relatively small mosaicity. Photoluminescence (PL) measurement was performed at both room temperature and low temperature. Ultraviolet (UV) emission at 3.30 eV was found with high intensity at room temperature while the deep level transition was weakly observed at 2.513 eV. The ratio of the intensity of UV emission to that of deep level emission was as high as 193, which implied high quality of ZnO film. From PL spectrum at 10 K, we observed A-exciton emission at 3.377 eV and D°X bound exciton transition at 3.370 eV. The donor–acceptor transition and LO phonon replicas were observed at 3.333 and 3.241 eV respectively. Raman scattering was performed in back scattering at room temperature. The E2, A1(LO) and A1(TO) mode was seen at 437.6, 575.8 and 380 cm–1 respectively. In comparison with Raman spectrum of ZnO powder, we found that ZnO film was nearly free of strain, which indicated high crystal quality.  相似文献   

20.
We investigate the negative thermal quenching behavior of the 3.338 eV emission in ZnO nanorods. A correlation between the 3.338 eV and the 3.368 eV (surface exciton) emissions is determined from temperature-dependent photoluminescence. The activation energies of the 3.338 eV emission, obtained using an approximated multi-level model, indicate an trap state between the two surface exciton emissions. The present study demonstrates a nondestructive and easy method to understand the surface effects on the optical properties of semiconductor nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号