首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let k be a positive integer with k?2; let h(?0) be a holomorphic function which has no simple zeros in D; and let F be a family of meromorphic functions defined in D, all of whose poles are multiple, and all of whose zeros have multiplicity at least k+1. If, for each function fF, f(k)(z)≠h(z), then F is normal in D.  相似文献   

2.
Let F be a family of holomorphic functions in a domain D, and let a(z), b(z) be two holomorphic functions in D such that a(z)?b(z), and a(z)?a(z) or b(z)?b(z). In this paper, we prove that: if, for each fF, f(z)−a(z) and f(z)−b(z) have no common zeros, f(z)=a(z) whenever f(z)=a(z), and f(z)=b(z) whenever f(z)=b(z) in D, then F is normal in D. This result improves and generalizes the classical Montel's normality criterion, and the related results of Pang, Fang and the first author. Some examples are given to show the sharpness of our result.  相似文献   

3.
Let k be a positive integer and F be a family of meromorphic functions in a domain DC such that each fF has only zeros of multiplicity at least k+1. If for each pair (f, g) in F, ff(k) and gg(k) share a non-zero complex number a ignoring multiplicity, then F is normal in D.  相似文献   

4.
Normal families of meromorphic functions with multiple zeros and poles   总被引:1,自引:0,他引:1  
LetF be a family of functions meromorphic in the plane domainD, all of whose zeros and poles are multiple. Leth be a continuous function onD. Suppose that, for eachfF,f 1(z) εh(z) forz εD. We show that ifh(z) ≠ 0 for allz εD, or ifh is holomorphic onD but not identically zero there and all zeros of functions inF have multiplicity at least 3, thenF is a normal family onD. Partially supported by the Shanghai Priority Academic Discipline and by the NNSF of China Approved No. 10271122. Research supported by the German-Israeli Foundation for Scientific Research and Development, G.I.F. Grant No. G-643-117.6/1999.  相似文献   

5.
On Montel's theorem and Yang's problem   总被引:1,自引:0,他引:1  
Let F be a family of meromorphic functions defined in a domain D, and let ψ be a function meromorphic in D. For every function fF, if (1)f has only multiple zeros; (2) the poles of f have multiplicity at least 3; (3) at the common poles of f and ψ, the multiplicity of f does not equal the multiplicity of ψ; (4)f(z)≠ψ(z), then F is normal in D. This gives a partial answer to a problem of L. Yang, and generalizes Montel's theorem. Some examples are given to show the sharpness of our result.  相似文献   

6.
Take positive integers n,k?2. Let F be a family of meromorphic functions in a domain DC such that each fF has only zeros of multiplicity at least k. If, for each pair (f,g) in F, fn(f(k)) and gn(g(k)) share a non-zero complex number a ignoring multiplicity, then F is normal in D.  相似文献   

7.
Normal families of meromorphic functions with multiple values   总被引:1,自引:0,他引:1  
Let F be a family of meromorphic functions defined in a domain D, let ψ(?0) be a holomorphic function in D, and k be a positive integer. Suppose that, for every function fF, f≠0, f(k)≠0, and all zeros of f(k)−ψ(z) have multiplicities at least (k+2)/k. If, for k=1, ψ has only zeros with multiplicities at most 2, and for k?2, ψ has only simple zeros, then F is normal in D. This improves and generalizes the related results of Gu, Fang and Chang, Yang, Schwick, et al.  相似文献   

8.
A criterion of normality based on a single holomorphic function   总被引:1,自引:0,他引:1  
Let F be a family of functions holomorphic on a domain D ⊂ ℂ Let k ≥ 2 be an integer and let h be a holomorphic function on D, all of whose zeros have multiplicity at most k −1, such that h(z) has no common zeros with any fF. Assume also that the following two conditions hold for every fF: (a) f(z) = 0 ⇒ f′(z) = h(z); and (b) f′(z) = h(z) ⇒ |f (k)(z)| ≤ c, where c is a constant. Then F is normal on D.  相似文献   

9.
The authors discuss the normality concerning holomorphic functions and get the following result. Let F be a family of holomorphic functions on a domain D ⊂ ℂ, all of whose zeros have multiplicity at least k, where k ≥ 2 is an integer. And let h(z) ≢ 0 be a holomorphic function on D. Assume also that the following two conditions hold for every fF: (a) f(z) = 0 ⇒ |f (k)(z)| < |h(z)|; (b) f (k)(z) ≠ h(z). Then F is normal on D.  相似文献   

10.
Let be a positive integer, let F be a family of meromorphic functions in a domain D, all of whose zeros have multiplicity at least k+1, and let , be two holomorphic functions on D. If, for each fF, f=a(z)⇔f(k)=h(z), then F is normal in D.  相似文献   

11.
Let k be a positive integer and let ${\mathcal F}Let k be a positive integer and let F{\mathcal F} be a family of functions meromorphic in a plane domain D, all of whose zeros have multiplicity at least k + 3. If there exists a subset E of D which has no accumulation points in D such that for each function f ? F{f\in\mathcal F}, f (k)(z) − 1 has no zeros in D\E{D\setminus E}, then F{\mathcal F} is normal. The number k + 3 is sharp. The proof uses complex dynamics.  相似文献   

12.
We consider the normality criterion for a families F meromorphic in the unit disc Δ, and show that if there exist functions a(z) holomorphic in Δ, a(z)≠1, for each zΔ, such that there not only exists a positive number ε0 such that |an(a(z)−1)−1|?ε0 for arbitrary sequence of integers an(nN) and for any zΔ, but also exists a positive number B>0 such that for every f(z)∈F, B|f(z)|?|f(z)| whenever f(z)f(z)−a(z)(f2(z))=0 in Δ. Then is normal in Δ.  相似文献   

13.
Let k be a positive integer, let M be a positive number, let F be a family of meromorphic functions in a domain D, all of whose zeros are of multiplicity at least k, and let h be a holomorphic function in D, h ≢ 0. If, for every fF, f and f (k) share 0, and |f(z)| ≥ M whenever f (k)(z) = h(z), then F is normal in D. The condition that f and f (k) share 0 cannot be weakened, and the condition that |f(z)| ≥ M whenever f (k)(z) = h(z) cannot be replaced by the condition that |f(z)| ≥ 0 whenever f (k)(z) = h(z). This improves some results due to Fang and Zalcman [2] etc.  相似文献   

14.
Let k be a positive integer with k?2 and let be a family of functions meromorphic on a domain D in , all of whose poles have multiplicity at least 3, and of whose zeros all have multiplicity at least k+1. Let a(z) be a function holomorphic on D, a(z)?0. Suppose that for each , f(k)(z)≠a(z) for zD. Then is a normal family on D.  相似文献   

15.
Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.  相似文献   

16.
We show that a family F\mathcal{F} of analytic functions in the unit disk \mathbbD{\mathbb{D}} all of whose zeros have multiplicity at least k and which satisfy a condition of the form
fn(z)f(k)(xz) 1 1f^n(z)f^{(k)}(xz)\ne1  相似文献   

17.
Let ? and f be functions in the Laguerre-Pólya class. Write ?(z)=eαz2?1(z) and f(z)=eβz2f1(z), where ?1 and f1 have genus 0 or 1 and α,β?0. If αβ<1/4 and ? has infinitely many zeros, then ?(D)f(z) has only simple real zeros, where D denotes differentiation.  相似文献   

18.
We completely characterize the boundedness and compactness of composition operators from the space of Cauchy transforms on the unit disk D, into the Bloch-type space Bν as well as the little Bloch-type space Bν,0, consisting respectively of all holomorphic functions f on D such that supzDν(z)|f(z)|<, that is, of all holomorphic functions f on D such that lim|z|→1ν(z)|f(z)|=0, for some weight function ν. As a byproduct of our results, norm of the operator is calculated when Bν is replaced by Bν/C.  相似文献   

19.
Let f(z) be a normalized convex (starlike) function on the unit disc D. Let , where z=(z1,z2,…,zn), z1D, , pi?1, i=2,…,n, are real numbers. In this note, we prove that Φ(f)(z)=(f(z1),f′(z1)1/p2z2,…,f′(z1)1/pnzn) is a normalized convex (starlike) mapping on Ω, where we choose the power function such that (f′(z1))1/pi|z1=0=1, i=2,…,n. Some other related results are proved.  相似文献   

20.
Normal Families and Shared Values   总被引:57,自引:0,他引:57  
For f a meromorphic function on the plane domain D and a C,let f(a) = {z D: f(z) = a}. Let F be a family of meromorphicfunctions on D, all of whose zeros are of multiplicity at leastk. If there exist b 0 and h > 0 such that for every f F,f(0) = f(k)(b) and 0 < |f(k+1)(z)| h whenever z f(0), thenF is a normal family on D. The case f(0) = Ø is a celebratedresult of Gu [5]. 1991 Mathematics Subject Classification 30D45,30D35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号