首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanopowders of SrAl2O4 pure and doped with rare earths were prepared via a proteic sol-gel methodology. The prepared materials presented a single crystalline phase, confirmed by XRD measurements. AFM results indicate that the average particle size is about 53 nm for SrAl2O4 powders. The radioluminescence spectrum of SrAl2O4: Eu2+, Dy3+ is composed by two intense peaks around 520 and 570 nm followed by a weaker emission peaking at 615 nm. It was observed that the intensity of RL emission during irradiation with X-rays decreased as a function of the irradiation time, indicating the build up of radiation damage in the nanopowders. The irradiated samples exhibited a persistent radiation damage that changes the colour of the sample, and also influenced the reduction in the scintillation efficiency. The saturation level of SrAl2O4: Eu2+ is 96%, exhibiting good resistance to radiation damage.  相似文献   

2.
Cathodoluminescence (CL) properties of SiO2 powders activated with thulium (Tm3+) and holmium (Ho3+) ions prepared by a sol–gel process were investigated. Different molar concentrations of Tm3+ co-doped with Ho3+ were studied. The 460 nm peak was monitored and the influence of the beam energy and concentration of Tm3+ ions on the emission properties of this peak was also monitored. The peculiar behavior whereby the 460 nm emission peak decreases and the increase in the 705 and 865 nm peaks with the increase in the concentration of Tm3+ ions is reported. The relationship between the accelerating beam voltage and the CL intensity of the blue emission peak (460 nm peak) is established. Morphology, particle size and optical properties were characterized with Scanning electron microscopy (SEM), UV/VIS Lambda 750 S spectrometer and Auger electron spectroscopy (AES) equipped with Ocean Optics S2000, respectively.  相似文献   

3.
New tellurite glass series of the form (70-x)TeO2-20WO3-10Li2O-xLn2O3, where x=0, 1, 3 and 5 mol% and Ln=Nd, Sm and Er, were prepared. Density of the prepared glasses was measured and molar volume was calculated. Luminescence spectra of the prepared glasses were measured at room temperature using a micro-Raman spectrometer. The obtained luminescence intensity ratio was correlated with the rare earth ion concentration, the short distance between the identical rare earth ions r(Ln-Ln) and the glass density. Optical properties like refractive index, molar refractivity and optical polarizability were theoretically calculated in order to interpret the dependence of these properties on the rare earth ion content.  相似文献   

4.
We report, for the first time on luminescence from a Er3+ doped SrAl2O4 phosphor. Effects of Eu3+ doping were also studied. The influence of rare-earth doping in crystal structure and its optical properties were analysed by means of X-ray diffraction (XRD), Raman scattering, optical absorption, excitation and emission (PL) spectroscopy, thermally stimulated luminescence (TSL) and scanning electron microscope (SEM). Luminescence spectra and luminescence decay curves for Er3+ transitions in the near infrared region were recorded. The PL maximum for Eu doped SrAl2O4 is obtained at 620 nm and corresponds to the orange region of the spectrum. Diffraction patterns reveal a dominant phase, characteristic of the monoclinic SrAl2O4 compound and the presence of dopants has no effect on the basic crystal structure of SrAl2O4. The shapes of the glow curves are different for each dopant irradiated with either a 90Sr-90Y beta source, or UV light at 311 nm, and in detail the TL signals differ somewhat between Er and Eu dopants.  相似文献   

5.
Cubic phase Lu2O3:Er3+/Yb3+ nanocrystal phosphors were prepared by sol–gel method. Fourier transform infrared (FT-IR) spectra were measured to evaluate the vibrational feature of the samples. Green and red radiations were observed upon 980 nm diode laser excitation. Laser power and Er3+ or Yb3+ doping concentration dependence of upconversion luminescence were studied to understand upconversion mechanisms. Excited state absorption, cross relaxation and energy transfer processes are the possible mechanisms for the visible emissions.  相似文献   

6.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

7.
The electrical properties of CdF2 crystals doped with Eu3+ and Gd3+ are described. A reversible “forming” effect is observed under high electric fields. The effect seems to be connected with a reversible modification of the potential barrier at the metal-insulator contact.  相似文献   

8.
Self-standing W-nanodendrite structures were grown on SiO2 substrate using an electron-beam-induced deposition (EBID) process with various accelerating voltages from 400 to 1000 kV. Effect of accelerating voltage on crystallization of the nanodendrites was investigated. The nanodendrites consisted of nano-sized grains and amorphous structures. The nano-sized grains were determined to be W crystal in BCC structure. The higher was electron beam accelerating voltage, the higher was crystallinity of the as-fabricated nanodendrites. It is suggested that high-energy electron irradiation enhances diffusion of W atoms in the nanodendrites, promotes crystallization of W grains.  相似文献   

9.
The main luminescent centers in SiO2 films are the red luminescence R (1.85 eV) of the nonbridging oxygen hole center (NBOHC) and the oxygen deficient center (ODC) with a blue B (2.7 eV) and a UV band (4.4 eV). By means of a new “track-stop” technique we have investigated especially the initial luminescence behavior at the beginning of irradiation. Thus the blue-emitting center is produced under irradiation, but from existing precursors. Contrary to that, the dose behavior of the red (R) luminescence in wet and dry oxide is quite different, decreasing in wet oxide from a high initial level and increasing in dry oxide from almost zero. We propose a model of luminescence center transformation based on radiolytic dissociation and the reactions of mobile oxygen and hydrogen.  相似文献   

10.
Upconversion (UC) luminescence of Y2O3:Ho3+, Yb3+ nanocrystals codoped with different concentrations of Eu3+ ions were investigated to improve the monochromaticity of the UC emission. The results show that the monochromaticity, quantified by a parameter SR, increases as the concentration of Eu3+ ions becomes higher, which is due to the energy transfer between 5I7 (Ho3+) and 7F6 (Eu3+). The energy transfer accelerates the relaxation of Ho3+ ions from the 5I7 to 5I8 state and then quenches the red emission. The influence of the Eu3+ concentration on the pump power dependence of the red UC fluorescence in Y2O3:Ho3+, Yb3+, Eu3+ nanocrystals is verified using the steady-state rate equation theory.  相似文献   

11.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

12.
The energy transfer between Sm3+ and Er3+ ions in yttrium orthophosphate is studied. This choice of ions is based on the possibility of quantum cutting processes and the host material is selected according to the position of the 5d bands of the Sm3+ ion. The Sm3+ and Er3+ doped and Sm3+, Er3+ co-doped YPO4 have been synthesized. Spectroscopic studies were done in the ultraviolet and vacuum ultraviolet ranges. The energy transfer between Sm3+ and Er3+ is very efficient but it does not lead to Er3+ visible emission. Whatever the excitation wavelength, the emission of co-doped samples mainly occurs in the infrared range.  相似文献   

13.
Silica glass with SnO2 nanocrystals and Er3+ ions are prepared by the sol-gel route and treatment above 1000 °C. Transmission electron microscopy evidences a homogeneous dispersion of nanoclusters 4-6 nm in size in the amorphous silica matrix. Photoluminescence spectra excited at 3.5 eV, outside erbium transitions, show an inhomogeneous spectral distribution of light emission from interface defects, in the range 1.9-2.4 eV, resonant with transitions of erbium ions. The analysis of kinetics and temperature dependence of luminescence allows to quantify the efficiency of the energy transfer channel between nanoclusters and erbium ions.  相似文献   

14.
Present work is a study of temperature dependent electron paramagnetic resonance spectra of Ce and Gd doped nickel ferrite nanoparticles. The samples, synthesised by chemical route were characterised by X-ray diffractometer, electron paramagnetic resonance spectroscopy (EPR) and vibrating sample magnetometer (VSM). The average crystallite size of pure nickel ferrite is ∼64 nm and for Gd and Ce doped samples it is ∼20 nm and ∼14 nm, respectively. The EPR spectra were recorded from 120 to 300 K. Doping with Gd and Ce reduces the line width and g-value in comparison to that of pure nickel ferrite. Ce doped samples have the lowest values of both these parameters at room temperature. This indicates that Ce doped samples show lowest loss and is suitable for high frequency devices. EPR spin numbers are reduced while the spin relaxation time is increased after doping with rare earth ions. Gd doped samples have higher values of relaxation time and lower spin numbers in comparison to that of Ce doped samples. VSM results show that the magnetisation and coercivity are reduced after doping with both Ce and Gd rare earth ions.  相似文献   

15.
Polycrystalline samples of R3Cu4Si4 (R=Dy, Ho, Er) intermetallics were studied with neutron diffraction methods. All of them crystallize in the orthorhombic structure of Gd3Cu4Ge4-type and order antiferromagnetically at low temperatures. Magnetic moments localized at the rare earth atoms, that occupy two non-equivalent 2d and 4e sublattices, order simultaneously in Dy3Cu4Si4. The order is described by the propagation vector accompanied by , δ=0.025(2). In Ho3Cu4Si4 two propagation vectors are needed to model the magnetic order. These are: for the 4e sublattice, which disorders as the first when the temperature increases, and for the 2d sublattice. A similar situation is observed for Er3Cu4Si4 where the propagation vectors are: k=(0,1−δ,0), δ=0.097(2) for the 4e sublattice, which disorders as the first with increasing temperature, and , δ=0.0015(6) for the 2d sublattice.  相似文献   

16.
Sm3+ doped CdS nanoparticles have been prepared by sol-gel method. The effect of annealing temperatures and doping concentrations of CdS on the photoluminescence spectra of Sm3+ were studied. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4, and Ω6) have been computed and used to parameterize the radiative properties. The influences of CdS on Sm3+ ions were studied by fluorescence spectroscopy. The fluorescence spectra revealed that the emission intensity of samarium increased considerably in the presence of CdS nanoparticles. The evaluation of radiative properties of Sm3+ containing CdS showed that the 4G5/26H7/2 transition in silica matrix had the potential to be a laser transition.  相似文献   

17.
Alumina (Al2O3) powders doped with europium trivalent (Eu3+) were prepared by a low-temperature (∼280 °C) combustion synthesis technique. When the powder was heat treated at 1200 °C for 2 h in the presence of flowing ammonia (NH3), α-Al2O3 crystalline ceramic powders was obtained. The analysis of the luminescence showed that Eu3+ was reduced to europium divalent (Eu2+) after the heat-treatment process. Under ultraviolet (UV) lamp excitation (λ=254 nm) these powders containing sub-microcrystalline structures present bright red (Al2O3:Eu3+) and green (Al2O3:Eu2+) luminescence indicating that this material is a potential candidate for applications in phosphor technology.  相似文献   

18.
Six kind CaGa2S4 single crystals doped with different rare earth (RE) elements are grown by the horizontal Bridgman method, and their photoluminescence (PL) spectra are measured in the temperature range from 10 to 300 K. The PL spectra of Ce or Eu doped crystals have broad line shapes due to the phonon assisted 4f-5d transitions. On the other hand, those of Pr3+, Tb3+, Er3+ or Tm3+ doped samples show narrow ones owing to the 4f-4f transitions. The assignments of the electronic levels are made in reference to the reported data of RE 4f multiplets observed in same materials.  相似文献   

19.
A series of silica doped with different mol percentages of Ce3+ concentration was synthesized using a sol-gel method to determine the dependence of photoluminescence wavelengths and intensity on the concentrations of the dopants. Sol-gel glasses are porous networks that have been densified through chemical processing and heat treatment. Rare-earths (REs) are insoluble in silica; due to this insolubility RE ions in silicate glasses enter as network modifiers and compete for non-bridging oxygen in order to complete their coordination. The morphological, structural, thermal and optical properties of the phosphors were characterized by X-ray diffraction, scanning electron microscopy, UV-vis absorption, photoluminescence, thermogravimetric analyses and differential scanning calorimeter. Silica (SiO2) gel containing Ce3+ ions was sputter coated with Au (gold) in order to monitor surface morphology of the samples. The highest emission intensity was found for the sample with a composition of 0.5 mol% Ce3+. Cerium doped silica glasses had broad blue emission corresponding to the 2D3/2-2FJ transition at 448 nm but exhibited apparent concentration quenching above concentrations of 0.5 mol% Ce3+.  相似文献   

20.
In this study, red cathodoluminescence (CL) (λemission=614 nm) was observed from Pr3+ ions in a glassy (amorphous) SiO2 host. This emission was enhanced considerably when ZnO quantum dots (QDs) were incorporated in the SiO2:Pr3+ suggesting that the ZnO QDs transferred excitation energy to Pr3+ ions. That is, ZnO QDs acted to sensitize the Pr3+ emission. The sol–gel method was used to prepare ZnO–SiO2:Pr3+ phosphors with different molar ratios of Zn to Si. The effects of the ZnO QDs concentration and the possible mechanisms of energy transfer from ZnO to Pr3+ are discussed. In addition, the electronic states and the chemical composition of the ZnO–SiO2:Pr3+ phosphors were analyzed using X-ray photoelectron spectroscopy (XPS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号