首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A ligand with double sulfinyl groups, naphthyl-naphthalinesulphonylpropyl sulfoxide(dinaphthyl disulfoxide, L), was synthesized by a new method and its several lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DTA, 1HNMR and UV spectra. The composition of these complexes, were RE2(ClO4)6·(L)5·nH2O (RE = La, Nd, Eu, Tb, Yb, n = 2 ∼ 6, L = C10H7SOC3H6SOC10H7). The fluorescent spectra illustrated that the Eu (III) complex had an excellent luminescence. It was supposed that the ligand was benefited for transferring the energy from ligand to the excitation state energy level (5D0) of Eu (III). The Tb (III) complex displayed weak luminescence, which attributed to low energy transferring efficiency between the average triplet state energy level of ligand and the excited state (5D4) of Tb (III). So the Eu (III) complex displayed a good antenna effect for luminescence. The phosphorescence spectra and the relationship between fluorescence lifetime and fluorescence intensity were also discussed.  相似文献   

2.
In this paper, ligand effect of several bi-dental oxygen (O) and nitrogen (N) ligands on the red luminescence properties of europium ion (Eu3+) was studied comprehensively. Absorption, emission, and excitation spectral properties of ternary europium complexes with different combinations of ligands including thenoyl trifluoroacetone (TTA), naphthyl trifluoroacetone (NTA), 2,2′-bipyridyl (bpy) and phenanthroline (Phen) were investigated. Efficient Eu3+ red emission was observed with all the combinations of the above mentioned ligands. The most intense emission was found with the all nitrogen coordinated complex Eu(bpy)2(Phen)2 while the longest wavelength excitation band was recorded with oxygen-nitrogen mixed NTA-bpy complex Eu(NTA)1(bpy)3. With change of the ligands combination and ratio, the Eu3+ emission peak changes slightly from 612 to 618 nm. The absorption and excitation spectra of the europium complexes were compared and analyzed referring to the individual absorption spectral properties of the ligands. The relation between ligand-to-metal charge transfer states and luminescence intensities for different complexes was studied.  相似文献   

3.
A dinuclear Eu (III) complex Eu2(dbt)3·4H2O was synthesized, where H2dbt was 2,8-bis(4′,4′,4′,-trifluoro-1′,3′-dioxobutyl)-dibenzothiophene. The complex emits the characteristic red luminescence of Eu3+ ion due to the 5D07FJ(J=0-4) transitions under 395 nm-light excitation with a luminescent quantum efficiency of 17%. The complex is thermally stable up to 280 °C. It was found that the complex can be effectively excited by a 395 nm-emitting InGaN chip. Bright red light was obtained using the complex as light color-conversion material.  相似文献   

4.
The luminescence properties of BaZr(BO3)2:5% Eu were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation and different luminescence behaviors were observed by different excitation energies. After the analyses of the luminescence spectra, the result indicates that Eu3+ occupying non-centrosymmetric sites Ba2+ can be excited preferentially under 254 nm excitation, while Eu3+ occupying centrosymmetric sites Zr4+ can be excited preferentially under 147 nm excitation.  相似文献   

5.
A novel complex of Eu(III) with bicoordination ligand: 4,4′-bis[2-(2′-pyridyl) benzimidazol-yl]-biphenyl (Bmbp) has been synthesized. The structure of the ligand was characterized by 1H NMR, FT-IR and UV-vis; Eu(III) complex was characterized by FT-IR, UV-vis, elemental analysis, conductivity measurements and gel-permeation chromatography (GPC). The luminescence properties were investigated by UV-vis and fluorescence spectra. The experimental results show that the complex contain more than one Eu(III) ion, the emission at 614 nm from the 5D07F2 electronic dipole transition is large enhanced, and the complex is excellent energy transfer from ligand to Eu3+in the solid state. Thermal property measurement and analysis show that it has a good thermal stability.  相似文献   

6.
The complex of Eu(TTA)3Dipy was in situ synthesized in vinyltriethoxysilane-derived sol-gel glass (organically modified silicate, ORMOSIL) during heat treatment to obtain homogeneous transparent monolith by using thenoyltrifluoroacetone (TTA) as ligand and 2,2′-dipyridyl (Dipy) as synergic agent. The ORMOSIL doped with the Eu(TTA)3Dipy complex exhibits enhanced red light emission (∼614 nm) under UV excitation. The steady-state PL spectra at various temperatures and time-resolved luminescence spectra of the Eu(TTA)3Dipy complex in situ synthesized in the ORMOSIL and the complex polycrystalline powder dissolved in ethanol solution were measured. The photophysical properties responsible for the electronic transitions and excitation energy migration of the complex in ORMOSIL were discussed in this paper by comparison to that in ethanol.  相似文献   

7.
Complexes of Eu(III) with mixed macrocyclic azacrown ethers and 1,10-phenanthroline (phen) were synthesized and their luminescence properties measured. The specific azacrown ethers used were 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate (TETA) and 1,4,8,12-tetraazacyclopentadecane ([15]aneN4). The phen-coordinated complexes excited by UV light produced a very bright red emission via an intra-molecular energy transfer from phen to Eu(III). For [Eu(TETA)·(phen)·(H2O)] and [Eu([15]aneN4)·(phen)2]3+, the quantum yields of sensitized luminescence were 8.4% and 7.8%, respectively, and were much greater than those from non-sensitized luminescence of 1.2% and 4.4%, respectively. The decay times of the corresponding phen-coordinated complexes, as measured at room temperature, were 1.6 and 0.6 ms, respectively, and were much longer than those of the phen-uncoordinated complexes of 0.3 and 0.2 ms, respectively.  相似文献   

8.
Li WX  Guo L  Chen LJ  Shi XY 《Journal of fluorescence》2008,18(6):1043-1049
A ligand with two carbonyl groups and one sulfinyl group has been synthesized by a new method and its several lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, 1H NMR and UV spectra. The results indicated that the composition of these complexes is REL5(ClO4)3·3H2O (RE = La(III), Pr(III), Eu(III), Tb(III), Yb(III), L = C6H5COCH2SOCH2COC6H5). The fluorescent spectra illustrate that both the Tb (III) and Eu (III) complexes display characteristic metal-centered fluorescence in solid state, indicating the ligand favors energy transfer to the excitation state energy level of them. However, the Tb (III) complex displays more effective luminescence than the Eu (III) complex, which is attributed to especial effectively in transferring energy from the average triplet energy level of the ligands (T) onto the excited state (5D4) of Tb (III) than that (5D0) of Eu (III), showing a good antenna effect for Tb(III) luminescence. The phosphorescence spectra and the relationship between fluorescence lifetimes and fluorescence intensities were also discussed.  相似文献   

9.
基于邻菲咯啉的反应型三元铕配合物的合成与荧光性质   总被引:1,自引:0,他引:1  
以二苯甲酰甲烷(HDBM)为第一配体,5-丙烯酰胺基-1,10-菲咯啉(Aphen)为活性第二配体,制备了新的反应型三元铕配合物Eu(DBM)3Aphen。通过元素分析、红外光谱和热分析对配合物进行了组成确定,采用紫外光谱、荧光光谱、荧光寿命和荧光量子产量研究了配合物的光物理性能。结果表明,在紫外光激发下,配合物Eu(DBM)3Aphen能发射Eu3+的特征荧光,其荧光发射强度、单色性、荧光寿命和荧光量子产率等均显著高于文献报道的丙烯酸配合物Eu(DBM)2AA的相应数值,表明配合物Eu(DBM)3Aphen不仅可作为潜在的红色发光材料,还可作为反应型的配合物,为制备具有优异发光性能的稀土聚合物提供了一条新的途径。  相似文献   

10.
In this paper, Eu3+ β-diketone Complexes with the two ligands 1-(2-naphthoyl)-3, 3, 3-trifluoroacetonate (TFNB) and 2’2-bipyridine (bpy) have been synthesized. Furthermore, we reported a systematical study of the co-fluorescence effect of Eu(TFNB)3bpy doped with inert rare earth ions (La3+, Gd3+ and Y3+) and luminescence ion Tb3+. The co-luminescence effect can be found by studying the luminescence spectra of the doped complexes, which means that the existence of the other rare earth ions (La3+, Y3+, Gd3+ and Tb3+) can enhance the luminescence intensity of the central Eu3+, which may be due to the intramolecular energy transfer between rare earth ions and Eu3+. The efficient intramolecular energy transfer in all the complexes mainly occurs between the ligand TFNB and the central Eu3+. Full characterization and detail studies of luminescence properties of all these synthesized materials were investigated in relation to co-fluorescence effect between the central Eu3+ and other inert ions. Further investigation into the luminescence properties of all the complexes show that the characteristic luminescence of the corresponding Eu3+ through the intramolecular energy transfers from the ligand to the central Eu3+. Meantime, the differences in luminescence intensity of the 5D07F2 transition, in the 5D0 lifetimes and in the 5D0 luminescence quantum efficiency among all the synthesized materials confirm that the doped complex Eu0.5Tb0.5(TFNB)3bpy exhibits higher 5D0 luminescence quantum efficiency and longer lifetime than the pure Eu(TFNB)3bpy complex and other materials.  相似文献   

11.
The excitation spectra of M (M=Si4+, Ti4+) and Eu3+ co-doped BaZr(BO3)2, BaZrO3:Eu and La2Zr2O7:Eu in the vacuum ultraviolet (VUV) regions of 110-300 nm are investigated and the host-lattice absorption are characterized. The result indicated that BaZr(BO3)2:Eu3+ phosphor has a strong absorption under the VUV excitation, and in the host-lattice excitation, the strong band at 130-160 nm could be due to the BO3 atomic groups; the band at 160-180 nm is related to the excitation of Ba-O; 180-200 nm corresponds to the charge transfer (CT) transition of Zr-O. The band at 200-235 nm due to the CT band of Eu3+-O2− and a bond valence study explained the observed weak CT band of Eu3+-O2− in the excitation spectra of BaZr(BO3)2:Eu3+. The emission results show that Si4+ can sensitize luminescence in the host of BaZr(BO3)2:Eu but Ti4+ has no improvement effect on luminescence.  相似文献   

12.
A series of compounds Ln(RCOO)3·Phen (Ln=Eu, Gd, Tb; RCOO-1- and 2-naphthoate, 1- and 2-naphthylacetate, 1- and 2-naphthoxyacetate anions, Phen-1,10-phenanthroline) was investigated by methods of optical spectroscopy. Compounds of composition Ln(RCOO)3·nH2O with the same carboxylate ligands are also considered. Results of studies of the effects of methylene spacer decoupling the π-π- or p-π-conjugation in the naphthylcarboxylate ligand on the structure of Eu3+ coordination centre, on the lifetime of 5D0 (Eu3+) state, and on processes of the excitation energy transfer to Eu3+ or Tb3+ ions are presented. Introduction of the methylene bridge in the ligand weakens the influence of the steric hindrances in forming of a crystal lattice and results in lowering the distortion of the Eu3+ luminescence centre, and in elongation of the observed 5D0 lifetime τobs. The latter is caused by decrease in contribution of the radiative processes rate 1/τr. This is confirmed by the correlation between the lifetimes τobs and the quantities “τr·const” inversely proportional to the total integral intensities of Eu(RCOO)3·Phen luminescence spectra. The methylene spacer performs a role of regulator of sensitization of the Ln3+ luminescence efficiency by means of an influence on mutual location of lowest triplet states of the ligands, the ligand-metal charge transfer (LMCT) states, and the emitting states of Ln3+ ions. The lowest triplet state in lanthanide naphthylcarboxylate adducts with Phen is related to carboxylate anion. A presence of the methylene spacer in naphthylcarboxylate ligand increases the triplet state energy. At the same time, the energy of “carboxylic group-Eu3+ ion” charge transfer states falls, which can promote the degradation of excitation energy. In naphthylcarboxylates investigated a range of the carboxylate triplet state energies from 19 150 to 20 600 cm−1 was demonstrated in dependence on the type of the carboxylate anion. The interligand energy transfer from Phen to carboxylate lowest triplet state was revealed in complexes with Phen ligand. The effect of OH-group inserted in 1- or 3-position of 2-naphthoate ligand on the excitation energy transfer is also analyzed.  相似文献   

13.
Complexation and photophysical properties of complexes of lanthanide ions, Ln(III), with diethyl(phthalimidomethyl)phosphonate ligand, DPIP, were studied. Interactions between Ln(III) and DPIP were investigated using Nd(III) absorption and Eu(III) and Tb(III) luminescence (emission and excitation) spectra, recorded in acetonitrile solution containing different counter ions (NO3-, Cl- and ClO4-). Results of the absorption spectroscopy have shown that counter ions play a significant role in the complexation of Ln(III)/DPIP complexes. Studies of luminescence spectra of Eu(III) and Tb(III) ions proved that the formation of Ln(III)/DPIP complexes of stoichiometry Ln:L=1:3 is preferred in solution. Based on the results of elemental analysis, Nd(III) absorption spectra and IR and NMR data, it was shown that the DPIP ligand binds Ln(III) ions via oxygen from phosphoryl group, forming complexes of a general formula Ln(DPIP)3(NO3)3·H2O, in which the NO3- ions are coordinated with the metal ion as bidentate ligands. Luminescent properties and energy transfer, from the ligand to Ln(III) ions in the complexes formed, were studied based on the emission and excitation spectra of Eu(III) and Tb(III). Their luminescent lifetimes and emission quantum yields were also measured.  相似文献   

14.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

15.
A novel organic ligand, 6-aniline carbonyl 2-pyridine carboxylic acid (HAP), and the corresponding europium complex, tris(6-aniline carbonyl 2-pyridine carboxylato) europium (III) (Eu-AP) have been designed and synthesized. The results showed that Eu-AP was a conjugated complex, emitting strong red luminescence. The lifetimes of 5D0 of Eu3+ in the complex were examined using time-resolved spectroscopic analysis, and the lifetime value was 0.55 ± 0.01 ms for solid Eu(AP)3. Thermogravimetric analysis showed that the europium complex had good thermal stability.  相似文献   

16.
The photoluminescence (PL) emission and excitation spectra of undoped and doped with rare-earth (RE = Eu, Tb) ions K3Bi5(PO4)6 and K2Bi(PO4)(MoO4) crystals are studied in 3.7–14 eV region of the excitation photon energies at T = 8 and 300 K. The mechanisms of the host-related and RE-related luminescence in 3.7–7 eV region of the excitation photon energies are revealed in comparative analysis of the PL spectra of studied compounds. It is assumed that the excitation mechanisms of host luminescence of K3Bi5(PO4)6 and K2Bi(PO4) (MoO4) crystals below 4.8 eV are related to Bi3+ ions in oxygen surrounding. An efficient energy transfer from the Bi3+-related luminescence centers to the emitting RE centers exists in crystals with low concentration of the RE dopants (1%). The PL excitation spectra of K3Bi5(PO4)6 crystals with high concentration of Eu dopants are formed by O – Eu CT transitions.  相似文献   

17.
The vibrational spectra of Eu[Co(CN)6]·4H2O and luminescence spectra of Eu3+ in this compound, using 355 nm excitation at temperatures down to 10 K, have been assigned. A clear distinction is made between the n=5 and 4 members of the Ln[M(CN)6nH2O series from the vibrational spectra. The electronic spectra show prominent vibronic structures, particularly for the 5D07F2 sideband. A resonance occurs between the transitions 5D07F1(III) and 5D07F0+ν(Eu−N). A crystal field analysis of the derived energy data set is presented for Eu3+ in eight coordination geometry.  相似文献   

18.
Using urea as fuel, SrMgAl10O17:Eu, Dy phosphor was prepared by a combustion method. Its luminescence properties under ultraviolet (UV) excitation were investigated. Pure SrMgAl10O17 phase was formed by urea-nitrate solution combustion synthesis at 550 °C. The results indicated that the emission spectra of SrMgAl10O17:Eu, Dy has one main peak at 460 nm and one shoulder peak near 516 nm, which are ascribed to two different types of luminescent Eu2+ centers existing in the SrMgAl10O17 matrix crystal. The blue luminescence emission of SrMgAl10O17:Eu phosphors was improved under UV excitation by codoping Dy3+ ions. The SrMgAl10O17:Eu phosphors showed green afterglow (λ=516 nm) when Dy3+ ions were doped. Dy3+ ions not only successfully play the role of sensitizer for energy transfer in the system, but also act as trap levels and capture the free holes in the spinel blocks.  相似文献   

19.
A novel organic ligand, 6-parachloroaniline carbonyl 2-pyridine carboxylic acid, and the corresponding europium complex, tris(6-parachloroaniline carbonyl-2-pyridine carboxylate) europium (III) have been designed and synthesized. The results showed that the synthesized product was a conjugated complex, emitting remarkable strong red luminescence, and was a good red luminescence material with good thermal stability. The 5D0 lifetime of Eu3+ in the complex was examined using time-resolved spectroscopic analysis. The lifetime values for 1.0×10−5 mol/l ethanol solution of the complex and for the complex solid were 0.49±0.01 and 1.94±0.01 ms, respectively.  相似文献   

20.
Mesophase silica thin film doped with in-situ formed ternary Eu complex was synthesized by adding ligands (DBM=dibenzoylmethane, phen=1,10-phenanthroline), Eu ions (EuCl3·6H2O), and Pluronic P123 triblock copolymer into hydrolyzed tetramethoxy-silane (TMOS). The structure of this inorganic/organic film was characterized as a 2d-hexagonal structure by X-ray diffraction (XRD) and TEM analysis. The excitation spectra (λem=612 nm) and emission spectra (λex=325 nm) indicated that the ternary complex, Eu-DBM-phen, was formed in-situ during the formation of the film. The mesophase silica thin film doped with the in-situ formed Eu complex showed a higher quantum efficiency compared to a pure Eu(DBM)3phen complex and a mesophase silica thin film doped with in-situ formed binary Eu-phen complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号