首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

2.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

3.
Long persistent SrAl2O4:Eu2+ phosphors co-doped with Dy3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl2O4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl2O4:Eu2+, Dy3+ were observed and the emission is attributed to the 4f65d1 to 4f7 transition of Eu2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.  相似文献   

4.
Samples of SrAl2O4:Eu3+ doped with B3+ and SrAl2O4:Eu3+ co-doped with B3+ and Li+ have been prepared by the solid-reaction method. The influence of B3+ and Li+ contents on luminescence property has been investigated. It is found that the substitution of B3+ for Al3+ greatly improves red emission intensity at 591, 615 and 701 nm. The dopant Li+ as charge compensator in SrAl2O4:Eu3+, B3+ can further enhance luminescence intensity. The strongest red emission is obtained in the Sr(Al1.9, B0.1)O4:Eu0.023+, Li+0.02 sample. The developed phosphors can be efficiently excited by ultraviolet (UV) light from 350 to 480 nm, which indicates that B3+ and Li+ co-doped SrAl2O4:Eu3+ is a good candidate phosphor applied in solid-state lighting in conjunction with white UV light-emitting diodes (LEDs).  相似文献   

5.
Reduction effects on the optical properties of Sm2+ ions doped in SrB4O7 and SrB6O10 crystals were studied by measurements of luminescence intensity decay as a function of time, X-ray irradiation and laser power effects on the photoluminescence. The fluorescence intensity of Sm2+ doped in SrB4O7 and SrB6O10 crystals decreased upon excitation at 488 nm of Ar+ laser and this so-called photo-bleaching effect was highly dependent on the sample preparation conditions. The fluorescence intensity of Sm2+ doped in SrB4O7 decreased about 13%, while it decreased about 55% in the SrB6O10 crystal irradiated with X-ray for 10 h. Differences of photo-beaching effect and other optical properties of Sm2+ doped in SrB4O7 and SrB6O10 are discussed.  相似文献   

6.
Six kind CaGa2S4 single crystals doped with different rare earth (RE) elements are grown by the horizontal Bridgman method, and their photoluminescence (PL) spectra are measured in the temperature range from 10 to 300 K. The PL spectra of Ce or Eu doped crystals have broad line shapes due to the phonon assisted 4f-5d transitions. On the other hand, those of Pr3+, Tb3+, Er3+ or Tm3+ doped samples show narrow ones owing to the 4f-4f transitions. The assignments of the electronic levels are made in reference to the reported data of RE 4f multiplets observed in same materials.  相似文献   

7.
Computational and experimental method is employed to study optical properties SrAl2O4 induced by europium dopant. Atomistic modeling is used to predict the doping sites and charge-compensation schemes for SrAl2O4:Eu systems and also to calculate the symmetry and the detailed geometry of the dopant site. This information is then used to calculate the crystal field parameters. SrAl2O4 doped with europium were prepared via a sol–gel proteic methodology. The photoluminescence experiments were performed at room temperature and at 13 K. The transition energy for the Eu3+-doped material is compared to the theoretical results. Based on Judd-Ofelt approach, the intensity parameters Ω2,4 of Eu3+ in the SrAl2O4 matrix were calculated.  相似文献   

8.
Europium-doped cubic Gd2O3:Eu3+ nanoparticles containing various activator content in the range of 5-15 wt% were synthesized by a liquid-phase reaction method to investigate the influence of Eu3+ loading on the optical properties of phosphors by using XRD, TEM, BET, spectrometer and fluorometer. The size of Gd2O3:Eu3+ powders was in the range 21-41 nm. The phosphors showed an initial increase in luminescence and then a subsequent decrease with further doping (above 10 wt%). The decay time was reduced with increasing Eu loading; however, it decreased significantly above the 10% Eu doping. From spectroscopic studies, the Eu3+ doping ion distribution was uniform and homogeneous up to the 10 wt% loading because no concentration quenching effect was observed. However, further Eu3+ doping above 10 wt% reduced the luminescence due to the concentration quenching effect, as deduced from the shortening of the decay time.  相似文献   

9.
The upconverted VUV (185 nm) and UV (230 and 260 nm) luminescence due to 5d-4f radiative transitions in Nd3+ ions doped into a LiYF4 crystal has been obtained under excitation by 351/353 nm radiation from a XeF excimer laser. The maximum upconversion efficiency, defined as the ratio of intensity for 5d-4f luminescence to overall intensity for 5d-4f and 4f-4f luminescence from the 4D3/2 Nd3+ level, has been estimated to be about 70% under optimal focusing conditions for XeF laser radiation. A redistribution of intensity between three main components of 5d-4f Nd3+ luminescence is observed under changing the excitation power density, which favors the most long-wavelength band (260 nm) at higher excitation density level. The effect is interpreted as being due to excited state absorption of radiation emitted. The upconverted VUV and UV luminescence from the high-lying 2F(2)7/2 4f level of Er3+ doped into a LiYF4 crystal has also been obtained under XeF-laser excitation the most intense line being at 280 nm from the spin-allowed transition to the 2H(2)11/2 4f level of Er3+, but the efficiency of upconversion for Er3+ emission is low, less than 5%.  相似文献   

10.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

11.
Infrared-to-visible upconversion luminescence spectra are investigated in Li+ and Er3+ codoped Y2O3 nanocrystals. By introducing Li+ ions, the upconverted emission intensity is found to be greatly enhanced when compared with the nanocrystals with the Li+ absent. The cause of the enhancement is believed to be the modification of the local symmetry of the Er3+ ion, which increases the intra-4f transitions of Er3+ ion, and the homogeneous distribution of Er3+. While in some other Er3+ doped oxides, such as ZnO, ZrO2, etc., the upconversion intensity of Er3+ ions could also be greatly increased by doping Li+.  相似文献   

12.
Er3+ and Er3+/Yb3+ co-doped tellurite glasses, suitable for developing optical fiber laser and amplifier, have been elaborated from the conventional melt-quenching method. Results of differential scanning calorimetry (DSC) measurements indicate a good thermal stability of tellurite glasses. The DSC measurements show an improvement of thermal stability of glass hosts after adding P2O5. Absorption spectrum from near infrared to visible was obtained and the Judd–Ofelt (J–O) intensity parameters (Ω2, Ω4, and Ω6) were determined. Spontaneous emission probabilities of some relevant transitions, branching ratio, and radiative lifetimes of several excited states of Er3+ have been predicted using intensity J–O parameters. Absorption cross-section and calculated emission cross-section, using the McCumber method, for the 4I13/24I15/2 transition, were determined and compared for the doped and co-doped glasses. Energy transfer (ET) and effect of changing concentration of P2O5 and Yb3+ ions on spectroscopic properties were investigated. It was found that the addition of P2O5 can increase the symmetry of the Er3+ ion. As a consequence, PL lifetime becomes more longer.The spectroscopic properties and the efficient infrared luminescence indicate that Er3+ doped TeO2–ZnO–Na2O–Er2O3(TZNE) is a promising laser and amplifier materials and may be a potentially useful material for developing upconversion fiber optical devices.  相似文献   

13.
Alternately Er doped Si-rich Al2O3 (Er:SRA) multilayer film, consisting of alternate Er-Si-codoped Al2O3 (Er:Si:Al2O3) and Si-doped Al2O3 (Si:Al2O3) sublayers, has been synthesized by co-sputtering from separated Er, Si, and Al2O3 targets. The dependence of Er3+ related photoluminescence (PL) properties on annealing temperatures over 700-1100 °C was studied. The maximum intensity of Er3+ PL, about 10 times higher than that of the monolayer film, was obtained from the multilayer film annealed at 950 °C. The enhancement of Er3+ PL intensity is attributed to the energy transfer from the silicon nanocrystals in the Si:Al2O3 sublayers to the neighboring Er3+ ions in the Er:Si:Al2O3 sublayers. The PL intensity exhibits a nonmonotonic temperature dependence: with increasing temperature, the integrated intensity almost remains constant from 14 to 50 K, then reaches maximum at 225 K, and slightly increases again at higher temperatures. Meanwhile, the PL integrated intensity at room temperature is about 30% higher than that at 14 K.  相似文献   

14.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

15.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

16.
Using urea as fuel, SrMgAl10O17:Eu, Dy phosphor was prepared by a combustion method. Its luminescence properties under ultraviolet (UV) excitation were investigated. Pure SrMgAl10O17 phase was formed by urea-nitrate solution combustion synthesis at 550 °C. The results indicated that the emission spectra of SrMgAl10O17:Eu, Dy has one main peak at 460 nm and one shoulder peak near 516 nm, which are ascribed to two different types of luminescent Eu2+ centers existing in the SrMgAl10O17 matrix crystal. The blue luminescence emission of SrMgAl10O17:Eu phosphors was improved under UV excitation by codoping Dy3+ ions. The SrMgAl10O17:Eu phosphors showed green afterglow (λ=516 nm) when Dy3+ ions were doped. Dy3+ ions not only successfully play the role of sensitizer for energy transfer in the system, but also act as trap levels and capture the free holes in the spinel blocks.  相似文献   

17.
Current radiation dosimetry methods involve the release of trapped charge carriers in the form of electrons-holes pairs generated by irradiation exposure of the dosimetric materials. Thermal and optical stimulations of the irradiated material freed the trapped charges that eventually recombine with interband centers producing the emission of light. The integrated intensity of the emitted light is proportional to the radiation dose exposure. In this work, we present an UV radiation dosimetry technique based on the characteristic persistence luminescence (PLUM) 4f65d1→4f7 electronic transition of Eu2+ ions in SrAl2O4:Eu2+, Dy3+. The dose assessment is carried out by measuring the PLUM signal integrated during a certain time. The PLUM performance of SrAl2O4:Eu2+, Dy3+ phosphor exhibited a linear behavior for the first 50 s of UV irradiation. For higher UV time exposure the behavior is sublinear with no apparent saturation during a 10 min period. The PLUM dosimetry response was performed at 400 nm that corresponds to the main band component of the PLUM excitation spectrum in the 250-500 nm range. The main advantage of a dosimeter device based on the PLUM of SrAl2O4:Eu2+, Dy3+ is that neither thermal nor optical stimulation is required, avoiding the need of cumbersome electronic photo/thermal stimulation equipment. Due to the highly efficient 250-500 nm PLUM response of SrAl2O4:Eu2+, Dy3+, it could have potential application as UV radiation dosimeter in the UV range of grate human health concerns caused by UV solar radiation.  相似文献   

18.
Bright green (at 525 and 550 nm) and red (at 660 nm) luminescence in Er:Yb:La3Ga5.5Ta0.5O14 (LGT) powder synthesized by solid state reaction was obtained by pumping at 936 nm. Yb3+-Er3+ energy transfer processes accounting for population of the 2H211/2, 4S3/2 and 4F9/2 Er3+ levels are discussed. The dependence of ratio between the intensities of the green and red luminescence on pump intensity is analyzed. The rather high quantum efficiency (58%) of the (4S3/2, 2H211/2) Er3+ emitting level recommends LGT doped with erbium and ytterbium for upconversion applications.  相似文献   

19.
Nanopowders of SrAl2O4 pure and doped with rare earths were prepared via a proteic sol-gel methodology. The prepared materials presented a single crystalline phase, confirmed by XRD measurements. AFM results indicate that the average particle size is about 53 nm for SrAl2O4 powders. The radioluminescence spectrum of SrAl2O4: Eu2+, Dy3+ is composed by two intense peaks around 520 and 570 nm followed by a weaker emission peaking at 615 nm. It was observed that the intensity of RL emission during irradiation with X-rays decreased as a function of the irradiation time, indicating the build up of radiation damage in the nanopowders. The irradiated samples exhibited a persistent radiation damage that changes the colour of the sample, and also influenced the reduction in the scintillation efficiency. The saturation level of SrAl2O4: Eu2+ is 96%, exhibiting good resistance to radiation damage.  相似文献   

20.
Up-conversion luminescence and energy transfer (ET) processes in Nd3+-Yb3+-Er3+ triply doped TeO2-ZnO-Na2O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er3+: 4S3/24I15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er3+ singly doped and Er3+-Yb3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb2O3-concentration and Nd2O3-concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd3+, Yb3+ and Er3+. And a possible up-conversion mechanism based on sequential ET from Nd3+ to Er3+ through Yb3+ is proposed for green and red up-conversion emission processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号