首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Results are presented for the cathodoluminescence (CL), X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and simultaneously two thermal analyses of (DTA/TGA) spectroscopy of dendritic agate which occurs in the Pliocene polymictic conglomerates of the Höyüklü Formation, North West of the Dereyalak village (Eskisehir, Turkey). Micro-Raman measurements were performed on dendritic agate and then strong quartz and moganite peaks were identified at 465 and 501 cm−1, respectively. Thermal analysis shows the loss of water and hydroxyl units occurs in 2 distinct stages; at 796 and 808 °C. Spatially resolved CL results at room temperature were recorded for chosen 3 different areas. Grey area (100% SiO2) displays the lowest CL emission. Brown area (99.7% SiO2 and 0.3% Fe2O3) contains exsolved non-detected ironed phases such as goethite-lepidochrocite to explain the brown colour and the iron point substitutional defects attributed to the 643 nm CL emission. White outer (98.7% SiO2 and 1.3% Al2O3) would be strongly disordered as observed in the “amorphous” Raman spectrum containing as inferred from the spectrum CL on the outer areas, particularly non-bridging oxygen hole centres (NBOHC) (317 nm) and [AlO4]°/H+ (380 nm) centres produced by large amounts of aluminium in the lattice (1.33% Al2O3). When it comes to collect the data in the time resolved CL spectrum, at least three broad emission bands were detected in: a green band of low intensity at about 496 nm, intense orange band at about 600 nm, and a red band at 670 nm. The CL emission at 670 nm shows some relationships between the hydroxyl or alkali content and the abundance of O2 (super 3-) centres and E1 centres. Another conspicuous observed feature in the CL spectra of agates is the existence of an orange emission band centred at around 600 nm. The predominance of the yellow CL emission band and the high concentration of E1 centres are typical for agates formed by acidic volcanism processes.  相似文献   

2.
Photoluminescent and optical properties of porous oxide films formed by two-step aluminum anodization at a constant potential of 30 V in sulfamic acid have been investigated after their annealing, ranging from room temperature up to 600 °C. X-ray diffraction reveals the amorphous nature of porous oxide films. Infrared and energy dispersive spectroscopy indicates the presence of sulfuric species incorporated in oxide films during the anodization. Photoluminescence (PL) measurements show PL bands in the range from 320 to 600 nm. There are two peaks in emission and excitation spectra. One emission peak is at constant wavelength centered at 460 nm and the other shifts from 390 to 475 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is at constant wavelength at 270 nm and the other also shifts to longer wavelengths while increasing emission wavelength. Upon annealing of the as-prepared oxide films PL increases reaching maximum value at about 300 °C and then decreases. The results indicate the existence of two PL centers, one placed at surface of the pore wall, while the other positioned inside the oxide films.  相似文献   

3.
Laser emission from binary mixtures of different dyes both in liquid solution and incorporated into solid polymeric matrices, covering the spectral region from green to red, is investigated. Mixtures of two synthesized dyes, analogs of the commercial dye Pyrromethene 567 (PM567), allowed covering the spectral range from green to orange. Tuning ranges in solid state of up to 42 nm with good photostabilities were demonstrated. To extend the tuning range to the red, binary mixtures of the dyes Pyrromethene 597 (PM597)/Pyrromethene 650 (PM650), PM567/DCM, and PM597/DCM were also studied. In liquid solution, a mixture of dyes PM567 and DCM allowed for narrow-linewidth laser emission continuously tunable over a range of 85 nm. In solid-state, mixtures of dyes PM597 and PM650 allowed laser emission tunable over two separate spectral regions up to a wavelength of 619 nm.  相似文献   

4.
Standard Reference Material (SRM) 2942 is a cuvette-shaped, Ce-ion-doped glass, recommended for use for relative spectral correction of emission from 320 to 430 nm and day-to-day performance verification of steady-state fluorescence spectrometers. Properties of this standard that influence its effective use or contribute to the uncertainty in its certified emission spectrum were explored here. These properties include its photostability, absorbance, dissolution rate in water, anisotropy and temperature coefficient of fluorescence intensity. The expanded uncertainties in the certified spectrum are about 9% around the peak maximum at 330 nm, using an excitation wavelength of 310 nm. The SRM also exhibits a strong resistance to photodegradation, with no measurable decrease in fluorescence intensity even after 25 h of irradiation with UV light>280 nm from a Xe lamp.  相似文献   

5.
The sol–gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce4+ ions capture electrons to form excited Ce3+ ions from which the luminescence originates.  相似文献   

6.
Visible light emission from atoms and ions sputtered on a polycrystalline Ti surface was observed under irradiation of 30 keV Ar3+ ions. A number of atomic lines of Ti I and II were observed in the wavelength of 250-850 nm. The intensity of Ti II emission increased 1.3-5.6 times by introducing oxygen molecules at a pressure of 5.8 × 10−5 Pa, whereas that of Ti I decreased 0.5-0.8 times. Factors enhancing or reducing photon intensities were plotted as a function of energy of the corresponding electrons in the excited states for Ti atoms and Ti+ ions.  相似文献   

7.
Terbium (1 mol%) doped ZnO-SiO2 binary system was prepared by a sol-gel process. Nanoscopic effects of ZnO on the photoluminescence (PL) and the cathodoluminescence (CL) properties were studied. Defects emission from ZnO nanoparticles was measured at 560 nm and the line emission from Tb3+ ions in SiO2:Tb3+ and ZnO-SiO2:Tb3+ with a major peak at 542 nm was measured. The PL excitation wavelength for 542 nm Tb3+ emission was measured at ∼320 nm in both SiO2:Tb3+ and ZnO-SiO2:Tb3+. The CL data showed quenched luminescence of the ZnO nanoparticles at 560 nm from a composite of ZnO-SiO2:Tb3+ and a subsequent increase in 542 nm emission from the Tb3+ ions. This suggests that energy was transferred from the ZnO nanoparticles to enhance the green emission of the Tb3+ ions. The PL and CL properties of ZnO-SiO2:Tb3+ binary system and possible mechanism for energy transfer from the ZnO nanoparticles to Tb3+ ions are discussed.  相似文献   

8.
In the course of a systematic investigation of dynamic, chemical, and laser-induced solid phase epitaxy of α-quartz after ion implantation, we have studied epitaxy and cathodoluminescence emission after 250 keV Cs-ion implantation and subsequent pulsed excimer laser treatment in air. Rutherford backscattering channelling analysis showed partial epitaxy for all the laser-irradiated samples; however, no full epitaxy was achieved. The optical properties of these samples were analyzed using cathodoluminescence spectroscopy, giving evidence of five emission bands at 2.42, 2.79, 3.25, 3.65, and 4.30 eV photon energy. Their intensity relation to the laser power and retained Cs-ion fraction are discussed and the present results will be compared with those obtained after chemical and dynamic epitaxy of quartz after alkali-ion, Ge, and Ba implantation.  相似文献   

9.
We mix the emission of a femtosecond Ti:sapphire laser with the emission of a continuous wave infrared laser in a beta-barium borate crystal. Green light with a center wavelength of 527 nm and a spectral width of 2.5 nm resulting from sum frequency generation is detected. An intensity study verifies that a nonlinear χ(2) process is at the origin of the green light generation. The experimentally obtained conversion efficiency of 7 × 10−10 is in good agreement to simple theoretical considerations.  相似文献   

10.
Both ZnO and Cu doped ZnO films with strong c-axis preferred orientation have been successfully prepared on porous silicon substrate, formed by electrochemical anodization, using radio frequency reactive magnetron sputtering method. X-ray diffraction measurements showed that the intensity of (0 0 2) diffraction peak first decreased and then increased with the Cu doping content increasing. Meanwhile new weak (1 0 0), (1 0 1), (1 0 2) and (1 1 0) diffraction peaks appeared after doping. The optical band edge of ZnO:Cu films, deduced from the optical absorption spectra, shifted to a longer wavelength comparing with the undoped sample and we attributed this red shift phenomenon to the decreasing of carrier concentration. The broad light emission from 350 to 800 nm was obtained by combining the blue–green emission from ZnO with red–orange emission from porous silicon. This could be used as a source of white light emitting diode chips underlying the importance of our work. The variation and origin of the emission peaks were discussed through the Gaussian deconvolution, and the Raman scattering spectral revealed the characteristics of porous silicon and multiphonon processes.  相似文献   

11.
Standard Reference Material® (SRM®) 2941 is a cuvette-shaped, uranyl-ion-doped glass, recommended for use for relative spectral correction of emission and day-to-day performance validation of fluorescence spectrometers. Properties of this standard that influence its effective use or contribute to the uncertainty in its certified emission spectrum have been explored here. These properties include its photostability, absorbance, dissolution rate in water, anisotropy, temperature coefficient of fluorescence intensity, and fluorescence lifetimes. The expanded uncertainties in the certified spectrum are about 4% around the peak maximum at 526 nm, using an excitation wavelength of 427 nm. The SRM also exhibits a strong resistance to photodegradation, with no measurable decrease in fluorescence intensity even after 8 h of laser irradiation.  相似文献   

12.
Preparation of Er3+, Ho3+ and Tm3+ ions co-doped SiO2 nanoparticle phosphor powders by sol gel method is reported. The morphology and the particle size of the SiO2 host matrix were confirmed by field emission scanning electron microscopy (FESEM). Ultraviolet, visible (UV/VIS) and cathodoluminescence measurements were carried out in order to investigate the optical properties of our powder phosphors. Green emissions at 520 nm from Er3+ and 544 nm from Ho3+, and red emissions at 665 nm from both Er3+ and Ho3+ ions are reported. Another emission peak in the near infra-red (NIR) region at 875 nm from Er3+ was also measured. Blue emission at 460 nm, red at 705 nm and a NIR peak in the region of 865 nm from Tm3+ were observed. Red, green and blue (RGB) colours were measured from both SiO2:Er3+,Tm3+ and SiO2:Ho3+,Tm3+ systems. The change in the intensities of the emission peaks in both the SiO2:Ho3+,Tm3+ and SiO2:Er3+,Tm3+ systems with the change in accelerating beam voltage is shown. Energy transfer from Tm3+ ions to Er3+ and Ho3+ ions was observed. A mechanism explaining the increase and decrease behaviour of the emission with accelerating beam voltage from both systems is reported.  相似文献   

13.
Thermoluminescence and cathodoluminescence data from natural and synthetic amethyst and synthetic quartz samples are compared. The spectra include features from the quartz host lattice and from impurity-generated recombination sites. Emission features exist throughout the wavelength range studied, 250–800 nm. The near infrared emission at 740–750 nm appears to be characteristic of the amethyst and is proposed to be due to Fe ion impurity.  相似文献   

14.
We report about a PPKTP optical parametric oscillator synchronously pumped by a picosecond Ti:Sapphire laser. The system is tunable in the spectral region around 1.55 μm which corresponds to the degeneracy wavelength. Nevertheless, it is able to deliver transform-limited pulses thanks to the insertion of a properly designed birefringent filter which ensures single-frequency operation as well. The resonating wavelength can be tuned for more than 100 nm by a simple rotation of the filter and is proven to be insensitive to cavity length detuning and pump wavelength drift.  相似文献   

15.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

16.
Photoluminescence excitation (PLE) spectra for the emission wavelength 1.54 μm were studied for erbium-doped xerogels embedded in artificial opals and porous anodic alumina films. Opals were chosen with photonic stop-band in green spectral range, where excitation of 1.54 μm occurs most efficiently. In comparison to the structure erbium-doped titania xerogel/porous anodic alumina/silicon the photoluminescence excitation spectra for 1.54 μm emission wavelength significantly changes for the same xerogels embedded in artificial opals. Enhancement of erbium-related 1.54 μm emission was observed from the structure Fe2O3 xerogel/porous anodic alumina fabricated on silicon, having some incompletely anodized aluminium, under excitation with either the lasing source at 532 nm or xenon lamp. Evident difference in PLE spectra for erbium doped TiO2 and Fe2O3 xerogels in porous anodic alumina is observed.  相似文献   

17.
The volcanic rocks of the Cabo de Gata region have been transformed by hydrothermal alteration, forming in some areas, highly silicified and feldspatized rocks. Various samples from outcrops of unaltered and hydrothermally altered volcanic rocks were studied by conventional transmitted-light microscopy to determine their genesis (magmatic, inherited or neoformed) and scanning electron microscope cathodoluminescence to define their spectral features. The magmatic quartz shows emission bands at 400, 440, and 480nm., and these bands disappear or decrease in the secondary hydrothermal quartz, characterized also by an intense emission band at around 570–580 nm, and another around 460 nm. The inherited magmatic plagioclase and neoformed anorthoclase have some similar emission bands and their genesis is not marked by cathodoluminescence features. The magmatic K-feldspars (sanidine), have emission bands at around 425, 440, and 490 nm, constituting a strong blue emission (420–500 nm). This emission is weaker in the neoformed K-feldspars that, however, have a strong emission band at around 570 nm. These data show that some cathodoluminescence spectral characteristic can be used to determine the petrogenesis of rock.  相似文献   

18.
ABSTRACT

In the present study, cathodoluminescence (CL) providing information about surface rather than bulk material reveals blue and red emissions within the sanidine feldspar from the Eifel Mountains, Germany. The emission line occurring in the blue region at about 450 nm reflects Al?O??Al structural defects, although distribution maps of the major elements, including Si, Al, and K, do not display a clear correlation with the CL properties of the sanidine feldspar. Dominant emission being in the longer-visible wavelength region (red region) ~730 nm is assumed to be caused by Fe3+ activation attributed to Fe3+?Al3+ substitution. Much less is known about the spectral characteristic of the feldspar CL emission, and the application of an older luminescence technique yields encouraging results for the practical application of the feldspar identification.  相似文献   

19.
The spectral structure of spontaneous emission of copper atom at 510.6 nm and 578.2 nm was calculated considering the hyperfine structure of energy levels and the isotope shift. The spectral structure of the 510.6 nm and 578.2 nm laser lines was measured in a sealed-off CuBr laser tube with periodic refreshment of the neon buffer gas under different work temperature and excited voltage. The spectral structure of the spontaneous emission of copper atom was found to have similar outline with its laser lines. The spectrum of the 510.6 nm laser line maintains similar outline with three peaks at various discharging parameters while the spectrum of the 578.2 nm laser line is strongly dependent on the reservoir temperature and the discharge voltage.  相似文献   

20.
A detailed investigation of aluminum plasma induced by a 1064 nm Nd:YAG laser in air was performed. The emission of spectral lines arising from Al I transition at 396.07 nm, Al II transition at 358.46 nm, Al III transition at 360.72 nm and Al IV transition at 363.05 nm were well-resolved. The plasma parameters including electron temperature and electron density were determined through the Boltzmann plot method using the emission line intensities of the same ionized stages of aluminum atoms and the Stark-broadening profiles of Al II emission line, respectively. The temporal evolutions of the spectral lines belonging to atomic and ionic aluminum elements and the plasma parameters were investigated at three different laser pulse energies. Moreover, the validity of local thermodynamic equilibrium was elucidated in our experimental condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号