首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The doping effect on charge carrier mobility in tris (8-hydroxyquinolinato) aluminum (Alq3) was studied by time-of-flight (TOF) measurements. The polar dopant, coumarin 6 (C-6) and extensive π conjugated dopant, 5,6,11,12-tetraphenylnaphthacene (rubrene) were used for this study. The co-doped of rubrene (Rb) with C-6 into Alq3 improved the carrier mobility compared to the single doped Alq3:C-6 film. The carrier mobility in single doped Alq3:C-6 film did not follow the linear relationship of Poole-Frenkel (PF) model with applied electric field. The mobility was in agreement with the PF model at two different ranges of electric fields (F) separated by a critical field . The mobility in co-doped Alq3:(Rb:C-6) film followed the linear relationship with the PF model. The energetic disorder was found as ∼0.32 eV in co-doped films. It was ∼0.55 and ∼0.27 eV before and after the critical field in Alq3:C-6 film. The values of positional disorders in co-doped films were estimated as ∼1.8 and it was ∼2 in Alq3:C-6 film at . The organic light emitting diode performance of the co-doped film was improved compared to single doped film. The luminescence efficiency was improved tremendously to ∼6  Cd/A in co-doped device at 45 mA/cm2 current compared to Alq3:C-6 film device of ∼1  Cd/A.  相似文献   

2.
Performances of red organic light-emitting device were improved by co-doping 2-formyl-5,6,11,12-tetraphenylnaphthacene (2FRb) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) in tris-(8-hydroxyquinoline) aluminum (Alq3) host as the emitting layer. The device with 1 wt% DCJTB and 2.4 w% 2FRb in Alq3 host gave a saturated red emission with CIE chromaticity coordinates of (0.65, 0.35) and a maximum current efficiency as high as 6.45 cd/A, which are 2 and 2.4 fold larger than that of the device with 1 wt% DCJTB (3.28 cd/A) in Alq3 host and the device with 2.4 wt% 2FRb (2.72 cd/A) in Alq3 host at the current density of 20 mA/cm2, respectively. The improvement could be attributed to the effective utilization of host energy by both energy transfer and trapping in the electroluminescence process and the depression of concentration quenching between the dopants molecules.  相似文献   

3.
Inverted top-emission organic light emitting devices (TEOLEDs) with a mixed single layer by mixing of electron transport materials (PyPySPyPy and Alq3), hole transport material (α-NPD) and dope material (rubrene) were investigated. Maximum power efficiency of 3.5 lm/W and maximum luminance of 7000 cd/m2 were obtained by optimizing the mixing ratio of PyPySPyPy:Alq3:α-NPD:rubrene=25:50:25:1. Luminance and power efficiency of mixed single layer device were two times improved compared to bi-layer heterojunction device and tri-layer heterojunction device. Lifetime test also shows that the mixed single layer device exhibits longer operational lifetimes of 343 h, which is three times longer than the 109 h for tri-layer device, and two times longer than the 158 h for bi-layer device. In addition, the maximum luminance and power efficiency were obtained at 20,000 cd/m2 and 7.5 lm/W, respectively, when a TPD layer of 45 nm was capped onto the top metal electrode.  相似文献   

4.
Thin films of ZnWO4 and CdWO4 were prepared by spray pyrolysis and the structural, optical, and luminescence properties were investigated. Both ZnWO4 and CdWO4 thin films showed a broad blue-green emission band. The broad band of ZnWO4 films was centered at 495 nm (2.51 eV) consisted of three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 540 nm (2.30 eV). The broad band of CdWO4 films at 495 nm (2.51 eV) could be decomposed to three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 545 nm (2.28 eV). These results are consistent with emission from the WO66− molecular complex. The luminance and efficiency for ZnWO4 film at 5 kV and 57 μA/cm2 were 48 cd/m2 and 0.22 lm/w, respectively, and for CdWO4 film the values were 420 cd/m2 and 1.9 lm/w.  相似文献   

5.
Y. Wang  N. Can 《Journal of luminescence》2011,131(9):1864-1868
Thermoluminescence emission spectra are presented for lithium doped variants of CaSO4:Dy or CaSO4:Tm dosimetry material. All three dopants (Li, Dy and Tm) variously introduce different changes in both the glow peak temperatures and the luminescence efficiency. In every case the emission signals display the line emission characteristic of the rare earth ions. At temperatures below ∼50 K the relative peak intensities differ for Dy and Tm doped samples, and there are small temperature shifts between the Dy:Li and Tm:Li co-doped materials. Above room temperature the rare earth ions do not show peak temperature movements when co-doped with lithium. However they do influence the peak temperature by ∼5 °C when they are the sole dopant. Inclusion of lithium dramatically moves the high temperature glow peak from ∼200 °C down to 120 °C. All these changes are consistent with a single defect model in which the trapping sites and luminescence occur within the complexes formed of the rare earth ion, an intrinsic sulphate defect and lithium. The evidence and rationale for such a model are presented. There is discussion which suggests that such defect complexes are the norm in thermoluminescence.  相似文献   

6.
In this article, we report on the effect of SiO2/Si3N4 dielectric distributed Bragg reflectors (DDBRs) for Alq3/NPB thin-film resonant cavity organic light emitting diode (RCOLED) in increasing the light output intensity and reducing the linewidth of spontaneous emission spectrum. The optimum DDBR number is found as 3 pairs. The device performance will be bad by further increasing or decreasing the number of DDBR. As compared to the conventional Alq3/NPB thin-film organic light emitting diode (OLED), the Alq3/NPB thin-film RCOLED with 3-pair DDBRs has the superior electrical and optical characteristics including a forward voltage of 6 V, a current efficiency of 3.4 cd/A, a luminance of 2715 cd/m2 under the injection current density of 1000 A/m2, and a full width at half maximum (FWHM) of 12 nm for emission spectrum over the 5-9 V bias range. These results represent that the Alq3/NPB thin-film OLED with DDBRs shows a potential as the light source for plastic optical fiber (POF) communication system.  相似文献   

7.
Low temperature quenching and high efficiency CaSc2O4:Ce3+ (CSO:Ce3+) phosphors co-doped with Tm3+, La3+ and Tb3+ ions were prepared by a solid state method and the phase-forming, morphology, luminescence and application properties of these phosphors were investigated. The results showed that co-doping of Tm3+, La3+ and Tb3+ ions can improve the luminescence properties and decrease temperature quenching of CSO:Ce3+ phosphor remarkably. High efficiency green-light-emitting diodes were fabricated with the prepared phosphors and InGaN blue-emitting (∼460 nm) chips. The good performances of the green-light-emitting LEDs made from co-doped CSO:Ce3+ phosphors confirm the luminescence enhancement and indicate that Tm3+, La3+ and Tb3+ co-doped CSO:Ce3+ phosphors are suitable candidates for the fabrication of high efficiency white LEDs.  相似文献   

8.
《Current Applied Physics》2015,15(12):1620-1623
We fabricated high efficiency yellow-color organic light-emitting diodes (OLEDs) by co-doping 2,8-di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenylnaphthacene (TBRb) and tris(8-hydroxyquinolinato)aluminum (Alq3) guests in a N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) host. Co-doping of electron-transporting Alq3 with yellow dopant TBRb in hole-dominant NPB layers resulted in substantial luminance-yield improvement compared to TBRb-only counterparts without color contamination from Alq3 green emission. The luminance yield of 11.4 cd/A, corresponding to the co-doping of 8% TBRb and 2% Alq3, is larger than previously reported luminance-yield values of conventional TBRb-based yellow OLEDs. Another advantage of the TBRb-Alq3 co-doped OLEDs is an insignificant roll-off of efficiency at high current-density and/or brightness levels.  相似文献   

9.
Efficient white electroluminescence has been obtained by using an electroluminescent layer comprising of a blue fluorescent bis (2-(2-hydroxyphenyl) benzoxazolate)zinc [Zn(hpb)2] doped with red phosphorescent bis (2-(2′-benzothienyl) pyridinato-N,C3′)iridium(acetylacetonate) [Ir(btp)2acac] molecules. The color coordinates of the white emission spectrum was controlled by optimizing the concentration of red dopant in the blue fluorescent emissive layer. Organic light-emitting diodes were fabricated in the configuration ITO/α-NPD/Zn(hpb)2:0.01 wt%Ir(btp)2acac/BCP/Alq3/LiF/Al. The J-V-L characteristic of the device shows a turn on voltage of 5 V. The electroluminescence (EL) spectra of the device cover a wide range of visible region of the electromagnetic spectrum with three peaks around 450, 485 and 610 nm. A maximum white luminance of 3500 cd/m2 with CIE coordinates of (x, y=0.34, 0.27) at 15 V has been achieved. The maximum current efficiency and power efficiency of the device was 5.2 cd/A and 1.43 lm/W respectively at 11.5 V.  相似文献   

10.
Characterization of two-emitter WOLED with no additional blocking layer   总被引:1,自引:0,他引:1  
Wenbin Chen  Lili Lu  Jianbo Cheng 《Optik》2010,121(1):107-680
In this paper, white organic light emitting diodes (WOLEDs) utilizing two primary-color emitters with no additional blocking layer are fabricated. With a structure of ITO/2TNATA (20 nm)/NPB (20 nm)/NPB: rubrene (2%) (10 nm)/ADN (30 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (100 nm), a white light with CIE coordinates of (0.344, 0.372) is generated at a current density of 30 mA/cm2 and the electroluminescence (EL) spectra consist of two broad bands around 456 nm (ADN) and 556 nm (NPB:rubrene). The device shows the low turn-on voltage and bright white emission with a power efficiency of 2.3 lm/W at a luminance of 100 cd/m2. Through control of the location of the recombination zone and energy transfer, a stable white light emission is achieved. The maximum color shift is less than 0.02 units on the 1931 CIE x,y chromaticity diagram. Given the spectral power distribution of WOLED, the parameters of a light source (chromaticity coordinate, CCT, CRI, and the luminous efficacy) can be calculated. A MATLAB program for this purpose is developed in this paper. Based on this, the design of WOLED for an illumination and display system using a white emitter with color filter arrays is discussed.  相似文献   

11.
The performance of organic light emitting device (OLED) structures, based on identically fabricated Alq3/TPD active regions, with various anode and cathode electrode structures are compared, and performance differences related to the different anode structure. The best performance was achieved with a conductive polymer, 3,4-polyethylenedioxythiopene-polystyrenesultonate (PEDOT), used as an anode layer, yielding a brightness of 1720 cd/m2 at 25 V, a turn-on voltage of 3 V, and electroluminescence (EL) efficiency and external quantum efficiency of 8.2 cd/A and 2%, respectively, at a brightness of 100 cd/m2 and 5 V. Compared to a baseline device (TPD/Alq3/Al), PEDOT anodes substantially reduce the turn-on voltage and made current injection almost linear after turn-on, whiles devices incorporating a LiF and CuPc layers significantly improved device efficiency while slightly improving turn-on voltage and maintaining superlinear I-V injection. This is attributed to the reduced barrier at the organic-organic interface in PEDOT, the ‘ladder’ effect of stepping the band offset over several interfaces, and the favorable PEDOT film morphology. The benefit of the PEDOT anode is clearly seen in the improvement in device brightness and the high external quantum efficiency obtained.  相似文献   

12.
We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechanism of the devices. The chromaticity of light emission can be tuned by adjusting the concentration of the dopants. White light with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK: TAPC: perylene (100:9:1 in wt.) (100 nm)/tris-(8-hydroxyquinoline aluminum (Alq3) (10 nm)/Al. The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2 cd/A.  相似文献   

13.
A white light-emitting device has been fabricated with a structure of ITO/m-MTDATA (45 nm)/NPB (10 nm)/DPVBi (8 nm)/DPVBi:DCJTB 0.5% (15 nm)/BPhen (x nm)/Alq3 [(55−x) nm]/LiF (1 nm)/Al, with x=0, 4, and 7. BPhen was used as the hole-blocking layer. This results in a mixture of lights from DPVBi molecules (blue-light) and DCJTB (yellow-light) molecules, producing white light emission. The chromaticity can be readily adjusted by only varying the thickness of the BPhen layer. The CIE coordinates of the device are largely insensitive to the driving voltages. When the thickness of BPhen is 7 nm, the device exhibits peak efficiency of 6.87 cd/A (3.59 lm/W) at the applied voltage of 6 V, the maximum external quantum efficiency ηext=2.07% corresponding to 6.18 cd/A, and the maximum brightness is 18494 cd/m2 at 15 V.  相似文献   

14.
Unintentionally doped and zinc-doped indium nitride (U-InN and InN:Zn) films were deposited on (0 0 0 1) sapphire substrates by radio-frequency reactive magnetron sputtering, and all samples were then treated by annealing to form In2O3 films. U-InN and InN:Zn films have similar photon absorption characteristics. The as-deposited U-InN and InN:Zn film show the absorption edge, ∼1.8-1.9 eV. After the annealing process at 500 °C for 20 min, the absorption coefficient at the visible range apparently decreases, and the absorption edge is about 3.5 eV. Two emission peaks at 3.342 eV (371 nm) and 3.238 eV (383 nm) in the 20 K photoluminescence (PL) spectrum of In2O3:Zn films were identified as the free-exciton (FE) or the near band-to-band (B-B) and conduction-band-to-acceptor (C-A) recombination, respectively.  相似文献   

15.
Gao  W.B.  Sun  J.X.  Yang  K.X.  Liu  H.Y.  Zhao  J.H.  Liu  S.Y. 《Optical and Quantum Electronics》2003,35(13):1149-1155
The brightness, efficiency and lifetime of organic light-emitting diodes (OLEDs) were remarkably improved by doping in a mixed layer. In this device, the emitting layer consists of a mixture of -naphthylphenybiphenyl amine (NPB), tris (8-hydroxyquinolinolate) aluminum (Alq3) (referred to as the mixed layer) and an emissive dopant 5,6,11,12-petraphenylnaphthacene (rubrene), where the concentration of NPB declined while the concentration of Alq3 was increased gradually in the deposition process. The device exhibited a maximum emission of 49,300 cd/m2 at a destroy voltage of 35 V and a maximum efficiency of 7.96 cd/A at 10 V, respectively. The efficiency improves twofold in comparison with the conventional doped devices. Meanwhile, the device exhibited superior operational stability with a half-life time of 1000 h at a starting luminance of 1000 cd/m2 by a constant current driver.  相似文献   

16.
Eu-doped Y2O3 particles with spherical shape and fine size were prepared by spray pyrolysis. The cathodoluminescence of Y2O3:Eu3+ powder was optimized by substituting small amount of zinc atoms in place of yttrium sites. As a result, the optimized (Y, Zn)2O3:Eu3+ phosphor showed 60% improved cathodoluminescence compared with Y2O3:Eu3+ particles. The prepared (Y, Zn)2O3:Eu3+ phosphor had spherical shape and 0.726 μm in mean size. Using these particles, the thickness of the phosphor film was controlled by varying the phosphor loading. The brightness and luminous efficiency of phosphor films prepared were monitored with varying the accelerating voltage ranges from 4 to 14 kV. The dependency of the luminous efficiency on the accelerating voltage was very sensitive to the phosphor loading. As increasing the accelerating voltage from 4 to 14 kV, the brightness of phosphor films prepared was monotonically increased from 200 to 1085 cd/cm2, but the saturation in the luminous efficiency appeared at 10 kV. The highest efficiency was achieved when the number of phosphor-particles layer was about 3. More details about the luminous efficiency and brightness were discussed with changing the phosphor loading.  相似文献   

17.
This study presents a new design that uses a combination of a graded hole transport layer (GH) structure and a gradually doped emissive layer (GE) structure as a double graded (DG) structure to improve the electrical and optical performance of white organic light-emitting diodes (WOLEDs). The proposed structure is ITO/m-MTDATA (15 nm)/NPB (15 nm)/NPB: 25% BAlq (15 nm)/NPB: 50% BAlq (15 nm)/BAlq: 0.5% Rubrene (10 nm)/BAlq: 1% Rubrene (10 nm)/BAlq: 1.5% Rubrene (10 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al (200 nm). (m-MTDATA: 4,4′,4″ -tris(3-methylphenylphenylamino)triphenylamine; NPB: N,N′-diphenyl-N,N′-bis(1-naphthyl-phenyl)-(1,1′-biphenyl)-4,4′-diamine; BAlq: aluminum (III) bis(2-methyl-8-quinolinato) 4-phenylphenolate; Rubrene: 5,6,11,12-tetraphenylnaphthacene; Alq3: tris-(8-hydroxyquinoline) aluminum). By using this structure, the best performance of the WOLED is obtained at a luminous efficiency at 11.8 cd/A and the turn-on voltage of 100 cd/m2 at 4.6 V. The DG structure can eliminate the discrete interface, and degrade surplus holes, the electron-hole pairs are efficiently injected and balanced recombination in the emissive layer, thus the spectra are unchanged under various drive currents and quenching effects can be significantly suppressed. Those advantages can enhance efficiency and are immune to drive current density variations.  相似文献   

18.
P. Mazur 《Applied Surface Science》2008,254(14):4336-4339
Alq3 thin layers were vapor deposited onto a single crystal of Si(1 1 1) and the morphology of the surface was investigated by the scanning tunneling microscope under ultrahigh vacuum conditions. The STM imaging showed considerable influence of the thermal processing onto the topography of the sample. Slowly raising the sample temperature to ∼160 °C caused a complete desorption of Alq3 molecules and uncovering the clean surface of Si(1 1 1). A fast rise of the temperature (flashing) to ∼600 °C led to decomposition of the Alq3 and resulted in remnants of a carbon-rich surface species. Then heating or flashing this surface to a temperature in excess of 1000 °C brought about the occurrence of regular shape object on the Si(1 1 1) surface.  相似文献   

19.
The efficiencies of red organic light-emitting diode (OLED) using tris-(8-hydroxy-quinoline)aluminum (Alq3) as host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant were greatly increased by adding a small amount (0.3 wt%) of Ir compound, iridium(III) bis(3-(2-benzothiazolyl)-7-(diethylamino)-2H-1-benzopyran-2-onato-N′,C4) (acetyl acetonate) (Ir(C6)2(acac)), as a sensitizer. The device has a sandwiched structure of indium tin oxide (ITO)/4,4′,4″-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine (T-NATA) (40 nm)/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′ diamine (NPB) (40 nm)/Alq3:DCJTB (0.7 wt%):Ir(C6)2(acac) (0.3 wt%) (40 nm)/Alq3 (40 nm)/LiF (1 nm)/Al (120 nm). It can be seen that the current efficiencies of this device remained almost (13.8±1) cd/A from 0.1 to 20,000 cd/m2 and the Commission International d’Eclairage (CIE) coordinates at (0.60, 0.37) in the range of wide brightness. The significant improvement was attributed to the sensitization effect of the doped Ir(C6)2(acac), thus the energy of singlet and triplet excitons is simultaneously transferred to the DCJTB.  相似文献   

20.
Y.F. Xu 《Applied Surface Science》2006,252(6):2328-2333
In situ photoluminescence spectroscopy (PL) measurements of tris(8-hydroxyquinoline) aluminum (Alq3) film were carried out. Upon deposition of Alq3 on the glass substrate, the PL intensity changes dramatically, while the peak position of Alq3 emission shows a sharp red-shift from 524 nm at the initial deposition of Alq3, and tends to a saturation value of 536 nm for the film thickness range from 2 to 500 nm. This red-shift is associated with the change from the 2D to 3D exciton state with increasing Alq3 film thickness. Temperature dependent PL spectra of Alq3 films showed, besides the changes in the PL intensity, clearly a blue-shift of Alq3 emission about 9 nm for the film annealing up to 150 °C, while no any shift of Alq3 emission was observed for the film annealing below 130 °C. Both changes in PL intensity, and especially in the peak position of Alq3 emission were attributed to crystallization (thermal) effect of Alq3 film upon annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号