首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re=100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and , the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short “vortex street” in front of the airfoil and the “vortex street” induces a “wind”; against this “wind” the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect. The project supported by the National Natural Science Foundation of China (19725210)  相似文献   

2.
利用有限体积法实现了基于非正交同位网格的SIMPLE算法。基于熵分析方法,采用涡粘性模型求解湍流熵产方程,系统研究了湍流模型对二维翼型绕流流场熵产率的影响。通过计算NACA0012翼型在来流雷诺数为2.88×106时,0°攻角~16.5°攻角范围内的翼型表面压力系数分布和升阻力特性,验证了算法及程序的正确性。结果表明,选择不同湍流模型时,翼型流场熵产的计算结果存在差异,湍流耗散是引起流场熵产的主要原因;翼型流场的熵产主要发生在翼型前缘区、壁面边界层和翼型尾流区域,流场熵产率与翼型阻力系数线性相关;当产生分离涡时,粘性耗散引起的熵产下降。  相似文献   

3.
Airfoil self-noise is a common phenomenon for many engineering applications. Aiming to study the underlying mechanism of airfoil self-noise at low Mach number and moderate Reynolds number flow, a numerical investigation is presented on noise generation by flow past NACA0018 airfoil. Based on a high-order accurate numerical method, both the near-field hydrodynamics and the far-field acoustics are computed simultaneously by performing direct numerical simulation. The mean flow properties agree well with the experimental measurements. The characteristics of aerodynamic noise are investigated at various angles of attack. The obtained results show that inclining the airfoil could enlarge turbulent intensity and produce larger scale of vortices. The sound radiation is mainly towards the upper and lower directions of the airfoil surface. At higher angle of attack, the tonal noise tends to disappear and the noise spectrum displays broad-band features.  相似文献   

4.
The mechanisms of sound generation and the kind of interaction of vortices with airfoils in an airflow are investigated. Experiments have been performed in stationary flow with vortices of a Kármán vortex street and in a shock tube flow with a starting vortex of a lifting airfoil. Depending on the dimensions of vortices and airfoils, their distance, and the flow Mach numbers, different kinds and amplitudes of upstream propagating steep sound waves occur.  相似文献   

5.
Incompressible viscous flow past an airfoil at low Reynolds numbers is investigated on the basis of a numerical solution of the complete Navier-Stokes equations. Steady flow regimes, with and without separation, are obtained and, moreover, periodic regimes with the formation of a vortex trail in the wake. The frequency of vortex formation is determined by the linear dimension of the projection of the airfoil on the normal to the freestream velocity. The relation between the Strouhal and Reynolds numbers, determined from this linear dimension, depends only slightly on the angle of attack and shape of the airfoil and is similar to the experimental dependence for circular cylinders.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 29–36, July–August, 1986.In conclusion the authors wish to express their warm thanks to G. I. Petrov for his interest in their work and valuable discussion of their results, and to V. P. Shkadova for discussing the formulation of the problem and the method of solution and for her constant readiness to advise on the organization of the calculations.  相似文献   

6.
Marine animals and micro-machines often use wiggling motion to generate thrust. The wiggling motion can be modeled by a progressive wave where its wavelength describes the flexibility of wiggling animals. In the present study, an immersed boundary method is used to simulate the flows around the wiggling hydrofoil NACA 65-010 at low Reynolds numbers. One can find from the numerical simulations that the thrust generation is largely determined by the wavelength. The thrust coefficients decrease with the increasing wavelength while the propulsive efficiency reaches a maximum at a certain wavelength due to the viscous effects. The thrust generation is associated with two different flow patterns in the wake: the well-known reversed Karman vortex streets and the vortex dipoles. Both are jet-type flows where the thrust coefficients associated with the reversed Karman vortex streets are larger than the ones associated with the vortex diploes.  相似文献   

7.
The problem of two-dimensional inviscid incompressible flow past an arbitrarily-shaped airfoil in the presence of developed cavitation is studied in an accurate nonlinear formulation.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 86–90, September–October, 1995.  相似文献   

8.
The present study deals with an investigation of the flow aerodynamic characteristics and the propulsive velocity of a system equipped with a nature inspired propulsion system. In particular, the study is aimed at studying the effect of the flapping frequency on the flow behavior. We consider a NACA0014 airfoil undergoing a vertical sinusoidal flapping motion. In contrast to nearly all previous studies in the literature, the present work does not impose any velocity on the inlet flow. During each iteration the outer flow velocity is computed after having determined the forces exerted on the airfoil. Forward motion may only be produced by flapping motion of the airfoil. This is more consistent with the physical phenomenon. The non-stationary viscous flow around the flapping airfoil is simulated using Ansys-Fluent 12.0.7. The airfoil movement is achieved using the deformable mesh technique and an in-house developed User Define Function (UDF). Our results show the influence of flapping frequency and amplitude on both the airfoil velocity and the propulsive efficiency. The resulting motion is contrasts to the applied forces. In the present study, the frequency ranges from 0.1 to 20 Hz while the airfoil amplitude values considered are: 10%, 17.5%, 25% and 40%.  相似文献   

9.
The effects of leading-edge blowing-suction on the vortex flow past an airfoil at high incidence are investigated numerically by solving the Navier-Stokes equations. The results indicate that the frequency of the flowfield excited by the periodic blowing-suction locks into the forcing frequency, which is half of the dominant frequency for the flow past a fixed airfoil without injection. In that case, a well-developed primary leading-edge vortex occupies the upper surface of the airfoil and the largest lift augmentation is obtained. The project supported by the National Defence Research Fund of China  相似文献   

10.
Summary An investigation is presented of the modifications that must be made to two-dimensional calculations of the flow past an airfoil when the flow takes place in a symmetric channel with slightly non-parallel walls.  相似文献   

11.
The effect of mini-flaps located on either the lower or upper side of an airfoil near its trailing edge on the flow around the trailing edge and the global flow past the airfoil is numerically investigated. The flow pattern near the trailing edge is compared with that on which the Chaplygin-Joukowski hypothesis is based. The mini-flap effect on the aerodynamic characteristics of the airfoil is studied.  相似文献   

12.
13.
A paradox of the blunt edge of an airfoil in an unsteady ideal flow is established, which states that the solution of the nonlinear problem of unsteady flow around a bluntedged airfoil subject to strict boundary conditions at this edge is physically meaningless. The paradox is a consequence of the adopted model of the unsteady fluid flow near the blunt edge, which assumes inflection of streamlines. It is established that the solution of the problem by local replacement of the blunt edge by a sharp edge using the hypothesis on the smoothness of streamlines near the trailing edge is physically meaningful.  相似文献   

14.
Simple formulas for calculating the pressure and the total hydrodynamic reactions acting on an arbitrarily moving airfoil are derived within the framework of the model of plane unsteady motion of an ideal incompressible fluid. Several vortex wakes may be shed from the airfoil owing to changes in velocity circulation around the airfoil contour. Cases with nonclosed and closed contours are considered. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 109–113, May–June, 2008.  相似文献   

15.
 Hot-wire measurements are performed in boundary-layer flows developing on a NACA 0012 airfoil over which wakes pass periodically. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The time- and phase-averaged mean streamwise velocities and turbulence fluctuations are measured to investigate the phenomena of wake-induced transition. Especially, the phase-averaged wall shear stresses are evaluated using a computational Preston tube method. The passing wakes significantly change the pressure distribution on the airfoil, which has influence on the transition process of the boundary layer. The orientation of the passing wake alters the pressure distribution in a different manner. Due to the passing wake, the turbulent patches are generated inside the laminar boundary layer on the airfoil, and the boundary layer becomes temporarily transitional. The patches propagate downstream at a speed smaller than the free-stream velocity and merge together further downstream. Relatively high values of phase-averaged turbulence fluctuations in the outer part of the boundary layer indicate the possibility that breakdown occurs in the outer layer away from the wall. It is confirmed that the phase-averaged mean velocity profile has two dips in the outer region of the transitional boundary layer for each passing cycle. Received: 12 February 2001 / Accepted: 6 July 2001 Published online: 23 November 2001  相似文献   

16.
Tonal noise or whistle noise is an aerodynamic noise known to be generated due to boundary layer instability. The relation between the instability of Tollmien–Schlichting wave and the tonal noise was dealt with, in previous studies, for rather limited cases that employed linear stability analysis or results for idealized flow configuration. To investigate the relation between the instability wave and tonal noise in a more thorough and systematic way, we employ the parabolized stability equation approach to compute details of the stability characteristics of boundary layer developed over pressure side surface of an airfoil at various angles of attack and various free-stream velocities. Discussions on the relation between the instability and the tonal noise have been given based on the comparison of the present computational results with the experimental data. We confirm that the overall U 1.5 dependency of the noise frequency with velocity is caused by the most amplified Tollmien–Schlichting wave. Application of a simple feedback model to the stability data of the present work provides us with the results that explain well the ladder-like structure and local U 0.8 dependency of the tonal noise. Effects of angle of attack and chord length on the tonal noise including the frequency, velocity range, and frequency difference between peaks of the noise are also examined.  相似文献   

17.
Omsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 47–52, January–February, 1995.  相似文献   

18.
A mathematical model of an unsteady separated flow around an oscillating airfoil is considered. This model is based on a viscid-inviscid approach. The points of separation and the intensity of vorticity displaced into the external flow are determined using boundary-layer equations in an integral form. Dynamic stall on an oscillating airfoil is studied. The mechanism and nature of antidamping are discovered. Novosibirsk State Technical University, Novosibirsk 630092. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 81–85, May–June, 2000.  相似文献   

19.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

20.
An assessment is made of the feasibility of using PIV velocity data for the non-intrusive aerodynamic force characterization (lift, drag and pitching moment) of an airfoil. The method relies upon the application of control-volume approaches in combination with the deduction of the pressure from the PIV experimental data, by making use of the momentum equation. First, the consistency of the method is verified by means of synthetic data obtained from CFD. Subsequently, the procedure was applied in an experimental investigation, in which the PIV approach is validated against standard pressure-based methods (surface pressure distribution and wake rake).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号