首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T‐cells and acts as a chemoattractant for monocytes. 1 Originally, CCL1 was identified as a 73 amino acid protein having one N‐glycosylation site, 1 and a variant 74 residue non‐glycosylated form, Ser‐CCL1, has also been described. 2 There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser‐CCL1. Here we report the total chemical syntheses of both N‐glycosylated and non‐glycosylated forms of (Ser‐)CCL1, by convergent native chemical ligation. We used an N‐glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide‐αthioester building block. 3 Chemotaxis assays of these glycoproteins and the corresponding non‐glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser‐)CCL1 using homogeneous N‐glycosylated protein molecules of defined covalent structure.  相似文献   

2.
Efficient, stereoselective glycosylation methods are required for the synthesis of complex oligosaccharides as tools in glycobiology. All glycosylation methods, which have found wide acceptance, rely on Lewis acid activation of glycosyl donors prior to glycosylation. Here, we present a new and efficient method for glycosylation under neutral or mildly basic conditions. Glycosides of methyl 2-hydroxy-3,5-dinitrobenzoate (DISAL) and its para regioisomer, methyl 4-hydroxy-3,5-dinitrobenzoate, were prepared by nucleophilic aromatic substitution. In a first demonstration of their potential as glycosyl donors, stereospecific glycosylation of methanol was achieved. In the glycosylation of more hindered alcohols, the beta-donor proved more reactive, and alpha-glucosides were predominantly formed. Glycosylation of protected monosaccharides, with free 6-OH or 3-OH, proceeded smoothly in 1-methyl-2-pyrrolidinone (NMP) at 40-60 degrees C in the absence of Lewis acids and bases in good to excellent yields. Glycosylation of 3-OH gave the alpha-linked disaccharide only.  相似文献   

3.
Mass spectrometry (MS) of large molecules such as proteins and oligosaccharides has not been employed in clinical practices, while that of small metabolites is widely used for the screening and diagnosis of various congenital diseases. Congenital disorders of glycosylation (CDG) is a newly recognized group of diseases derived from defects in the biosynthetic pathway of protein glycosylation and the patients are never decisively diagnosed unless the glycoprotein molecules are analyzed. We have constructed a diagnostic system where MS of glycoproteins and glycopeptides identifies abnormalities in their glycan moieties. This program is anticipated to reveal the prevalence of CDG and to demonstrate the essential role of MS in the emerging field of medicine, disease glycomics and glycoproteomics.  相似文献   

4.
Doping with (glyco)protein hormones represent an extremely challenging, analytical problem as nearly all are constitutively present at low concentrations that fluctuate according to circadian or alternative periodical, or external stimuli. Thus the mere concentration in a biological sample is only resolutive when this surpasses extreme values. As the vast majority of these molecules are produced by recombinant DNA technology it is believed that the exogenous molecules could bear the signature of the host cell. In particular, these could comprise structural differences originated from co or post-translational differences. In this study we have employed both proteomics and glycomics strategies to compare recombinant and urinary human chorionic gonadotrophin in order to evaluate this hypothesis. As anticipated the recombinant hormone could be shown to contain N-glycolyl neuraminic acid, a sialic acid that cannot be produced by humans. Furthermore, differences were observed in the overall glycosylation, in particular the presence of abundant hybrid-type glycans that were much less pronounced in the recombinant species. These differences were determined to occur predominantly in the alpha-subunit for which antidoping strategies focussed on these elements could be used for both chorionic gonadotrophin and lutrophin as they share the same alpha-subunit.  相似文献   

5.
Due to their extensive structural heterogeneity, the elucidation of glycosylation patterns in glycoproteins such as the subunits of human chorionic gonadotropin (hCG), hCG-alpha, and hCG-beta, remains one of the most challenging problems in the proteomic analysis of post-translational modifications. In consequence, glycosylation is usually studied after decomposition of the intact proteins to the proteolytic peptide level. However, by this approach all information about the combination of the different glycopeptides in the intact protein is lost. In this study we have, therefore, attempted to combine the results of glycan identification after tryptic digestion with molecular mass measurements on the native starting material of the new first WHO Reference Reagents (RR) for hCG-alpha (99/720) and hCG-beta (99/650). Despite the extremely high number of possible combinations of the glycans identified in the tryptic peptides by HPLC-MS (>1000 for hCG-alpha and >10 000 for hCG-beta), the mass spectra of intact hCG-alpha and hCG-beta revealed only a limited number of glycoforms present in hCG preparations from pools of pregnancy urines. Peak annotations for hCG-alpha were performed with the help of a bioinformatic algorithm that generated a database containing all possible modifications of the proteins, including modifications possibly introduced during sample preparation such as oxidation or truncation, for subsequent searches for combinations fitting the mass difference between the polypeptide backbone and the measured molecular masses. Fourteen different glycoforms of hCG-alpha, containing biantennary, partly sialylized hybrid-type glycans, including methionine-oxidized and N-terminally truncated forms, were identified. Mass spectra of high quality were also obtained for hCG-beta, however, a database search mass accuracy of +/-5 Da was insufficient to unambiguously assign the possible combinations of post-translational modifications. In summary, mass spectrometric fingerprints of intact molecules were shown to be highly useful for the characterization of glycosylation patterns of different hCG preparations such as the new first WHO RR for immunoassays and could be the first step in establishing biophysical reference methods for hCG and related molecules.  相似文献   

6.
Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics.  相似文献   

7.
Extracts obtained from roots of three lupine species (Lupinus albus, L. angustifolius, L. luteus) were analysed using LC/UV and LC/ESI/MS(n). The experiments were performed using two mass spectrometric systems, equipped with the triple quadrupole or ion trap analysers. Thirteen to twenty isomeric isoflavone conjugates were identified in roots of the investigated lupine species. These were di- and monoglycosides of genistein and 2'-hydroxygenistein with different patterns of glycosylation, both at oxygen and carbon atoms; some glycosides were acylated with malonic acid. It was not possible to establish the glycosylation sites of the aglycone only on the basis of the registered mass spectra; however, it was possible to differentiate C- and O-glucosides of isoflavones. Only comparison of retention times with those of standard compounds permitted to indicate the correct glycosylation pattern. In the case of diglycosides, the glycosylation pattern (O-diglucoside or O-glucosylglucoside) was distinguishable on the basis of the relative intensities of daughter ions in the mass spectra of protonated molecular ions. It was not possible to elucidate the site of malonylation on the sugar moiety from mass spectra, however, protonated molecules [M + H](+) of isoflavone glucosides with different placement of the malonyl group on the sugar ring were recognized in the extracts. In addition to the isoflavone glycosides, some flavone or flavonol glycosides were identified in the samples on the basis of collision-induced daughter ion spectra of the aglycone ions. A comparison of results obtained with the triple quadrupole and ion trap analysers was done in the course of the investigations.  相似文献   

8.
A core–satellite‐structured composite material has been successfully synthesized for capturing glycosylated peptides or proteins. This novel hybrid material is composed of a silica‐coated ferrite “core” and numerous “satellites” of gold nanoparticles with lots of “anchors”. The anchor, 3‐aminophenylboronic acid, designed for capturing target molecules, is highly specific toward glycosylated species. The long organic chains bridging the gold surface and the anchors could reduce the steric hindrance among the bound molecules and suppress nonspecific bindings. Due to the excellent structure of the current material, the trap‐and‐release enrichment of glycosylated samples is quite simple, specific, and effective. Indeed, the composite nanoparticles could be used for enriching glycosylated peptides and proteins with very low concentrations, and the enriched samples can be easily separated from bulk solution by a magnet. By using this strategy, the recovery of glycopeptides and glycoproteins after enrichment were found to be 85.9 and 71.6 % separately, whereas the adsorption capacity of the composite nanoparticles was proven to be more than 79 mg of glycoproteins per gram of the material. Moreover, the new composite nanoparticles were applied to enrich glycosylated proteins from human colorectal cancer tissues for identification of N‐glycosylation sites. In all, 194 unique glycosylation sites mapped to 155 different glycoproteins have been identified, of which 165 sites (85.1 %) were newly identified.  相似文献   

9.
Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase‐catalyzed glycosylation of the best‐selling biotherapeutic Herceptin, an anti‐HER2 antibody. Precise MS analysis of the intact four‐chain Ab heteromultimer reveals nonspecific, non‐enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non‐natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or “glycorandomization”) were readily generated.  相似文献   

10.
Mucin glycoproteins contribute to a wide range of cell-surface phenomena. Their dense glycosylation is believed to confer structural rigidity as well as molecular extension beyond the glycocalyx, crucial to interaction with the cellular environment. However, controlled investigations of the relationships between glycosylation, rigidity, and extension of membrane-bound mucins or similar macromolecules are lacking, largely because of the absence of tractable experimental models. We have therefore made use of recently developed synthetic mucin mimetics, in which the core alpha-GalNAc monosaccharides of natural mucins are conjugated to a lipidated polymer backbone and anchored to fluid, solid-supported lipid membranes, and fluorescence interference contrast microscopy, an optical technique that provides nanometer-scale topographic information about objects near a reflective interface, to measure the orientation of the mucin mimics relative to the membrane plane. Data from two independent probes, fluorophores conjugated directly to the polymer backbone and fluorescent proteins bound to the sugar groups, unexpectedly show that the mucin mimic molecules lie flat along the membrane. Rigidity and core glycosylation are therefore insufficient to ensure molecular projection outward from a membrane surface.  相似文献   

11.
The borondipyrromethene (BODIPY) labeled new glycosylphosphatidylinositol (GPI) molecules were synthesized as cellular probes to study the chemical basis of microdomain organization of GPI-anchored proteins and cholesterol in plasma membrane. The synthesis enabled by a new stereo-selective glycosylation of myo-d-inositol acceptor led to the preparation of optically pure glucosaminyl-(1-6)-α-phosphatidyl-myo-d-inositol and its unnatural stereoisomer.  相似文献   

12.
Interleukin-23 (IL-23) is a heterodimeric cytokine, a central factor in chronic/autoimmune inflammation. It signals through a heterodimeric receptor consisting of IL-23r, which is heavily glycosylated. The structural characterization of IL-23r has not been reported. In this work, glycosylation profiles of soluble recombinant human IL-23r (rhIL-23r) were established using mass spectrometry (MS), which included defining glycosylation sites, degree of glycosylation occupancy of each site and structure of attached oligosaccharides. Specifically, precursor ion scan of oxonium ion protonated N-acetylglucosamine (GlcNAc(+)) (m/z 204) was performed using a triple quadrupole MS instrument to locate the retention time of glycopeptides. Both the glycopeptides and their corresponding deglycosylated forms in each collected HPLC fraction were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (LTQ-Orbitrap) for glycosylation site profiling. The attached glycan structures were elucidated by collision-induced dissociation (CID) fragmentation of target glycopeptides in combination with accurate mass measurement. Eight glycosylation sites were identified on IL-23r (Asn24, Asn209, Asn239, Asn157, Asn118, Asn250, Asn58 and Asn6). Most of the glycosylation sites were > 95% occupied except Asn250 and Asn6. Those two sites were 88% and 45% occupied by estimation from trypsin digestion and were 55% and 42% occupied from LysC digestion. Multiple glycoforms were observed in IL-23r. Most of them were bi-, tri- or tetra-antennary complex type structures with fucose and sialic acid. High mannose and hybrid type glycans were only observed on Asn157. The structural characterization on IL-23r glycosylation provides useful information for better understanding of the biological function of IL-23r.  相似文献   

13.
The acute phase response to injury or infection results in alterations in the expression of the plasma proteins produced by the liver. Many of these biomolecules are glycosylated with oligosaccharide chains covalently attached to the polypeptide backbone and the extent and composition of this glycosylation can be altered in a disease-dependent manner. Of particular interest is the observation that the acute phase glycoprotein, alpha-1-acid glycoprotein (AGP) has altered glycosylation in several physiological and pathological conditions. It is posited that changes induced in liver diseases may reflect disease severity and may therefore act as a non-invasive marker of fibrosis. This study has investigated the glycosylation of AGP in the plasma of people with varying degrees of cirrhosis and fibrosis. Hyperfucosylation was observed in all disease samples in comparison to normal plasma and was significantly increased in cirrhosis. Both sialic acid and N-acetylgalactosamine (GalNAc) were negatively associated with fibrosis. Two samples were found to express GalNAc, which as a constituent of the glycosylation of serum proteins is rare. In conclusion, fucose, sialic acid and other aspects of the glycosylation of AGP are influenced by the degree of fibrosis and as such may prove a valuable prognostic indicator of the development of cirrhosis.  相似文献   

14.
Liquid chromatography mass spectrometry (LC-MS) peptide mapping can be a versatile technique for characterizing protein glycosylation sites without the need to remove the attached glycans as in conventional oligosaccharide mapping methods. In this way, both N-linked and O-linked sites of glycosylation can each be directly identified, characterized, and quantified by LC-MS as intact glycopeptides in a single experiment. LC-MS peptide mapping of the individual glycosylation sites avoids many of the limitations of preparing and analyzing an entire pool of released N-linked oligosaccharides from all sites mixed together. In this study, LC interfaced to a linear ion trap mass spectrometer (ESI-LIT-MS) were used to characterize the glycosylation of a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein with multiple sites of N-and O-glycosylation. Samples were reduced, S-carboxyamidomethylated, and cleaved with either trypsin or endoproteinase Asp-N. Enhanced detection for minor IgG1 glycoforms (~0.1 to 1.0 mol% level) was obtained by LC-MS of the longer 32-residue Asp-N glycopeptide (4+ protonated ion) compared to the 9-residue tryptic glycopeptide (2+ ion). LC-MS peptide mapping was run according to a general procedure: (1) Locate N-linked and/or O-linked sites of glycosylation by selected-ion-monitoring of carbohydrate oxonium fragment ions generated by ESI in-source collision-induced dissociation (CID), i.e. 204, 366, and 292 Da marker ions for HexNAc, HexNAc-Hex, and NeuAc, respectively; (2) Characterize oligosaccharides at each site via MS and MSMS. Use selected ion currents (SIC) to estimate relative amounts of each glycoform; and (3) Measure the percentage of site-occupancy by searching for any corresponding nonglycosylated peptide.  相似文献   

15.
设计合成了2个Globo H四糖衍生物1和2, 将其作为标准样品可用于研究β1,3-葡萄糖醛酸(GlcA)转移酶及GlcA-3-O-硫酸化(Sulfo)转移酶在肿瘤组织内的特异性表达.  相似文献   

16.
The high versatility of di-tert-butylsilylene(DTBS)-directed alpha-predominant galactosylation have been extended to the construction of difficult glycan sequences. First, to investigate the compatibility of the alpha-predominant reaction with various glycosylation systems a variety of 4,6-O-DTBS-tethered galactosaminyl or galactosyl donors were synthesized efficiently, which have C2-participating groups with a wide variety of leaving groups such as alkylsulfenyl, halide, trichloroacetimidate groups. The results of the detailed examination of the glycosylation reaction using the glycosyl donors showed the wide scope of the 4,6-DTBS-directed alpha-galactosylation. In the next step, the stereoselective construction of alpha-GalN-Ser/Thr sequences was examined by employing the DTBS-directed glycosylation. As a result, various types of serine and threonine derivatives were glycosylated alpha-selectively, producing alpha-GalN-Ser/Thr sequences in high yields. Moreover, the DTBS-directed galactosylation was successfully applied for the synthesis of alpha-tetrasaccharyl-Ser segment of glycophorin A.  相似文献   

17.
The Programmed cell Death protein-1/Ligand 1 (PD-1/L1) checkpoint is a major target in oncology. Monoclonal antibodies targeting PD-1 or PD-L1 are used to treat different types of solid tumors and lymphoma. PD-L1-binding small molecules are also actively searched. The lead compound is the biphenyl drug BMS-202 which stabilizes PD-L1 protein dimers and displays a potent antitumor activity in experimental models. Here we have investigated the effect of N-glycosylation (at N35, N192, N200 and N219) and mono-ubiquitination (at K178) of PD-L1 on the interaction with BMS-202 by molecular modeling. Two complementary tridimensional models of PD-L1, based on available crystallographic structures, were constructed with BMS-202 bound. The structures were glycosylated, with a fucosylated bi-antennary N-glycan and ubiquitinated. Model 1 refers to glycoPD-L1 bearing 16 N-glycans, with or without 4 ubiquitin residues. Model 2 presents 8 N-glycans and 2 ubiquitin residues. In both cases, BMS-202 was bound to the protein interface, stabilizing a PD-L1 dimer. The incorporation of the N-glycans or the ubiquitins did not significantly alter the drug-protein recognition. The interface of the drug-stabilized protein dimer is unaffected by the glycosylation or ubiquitination. Calculations of the binding energies indicated that the glycosylation slightly reduces the stability of the drug-protein complexes but does not prevent the drug binding process. Our modeling study suggests that the drug can target efficiently the different forms of PD-L1 in cells, glycosylated, ubiquitinated or not. These models of N-glycosylated and ubiquitinated PD-L1 will be useful to study other PD-L1 protein complexes.  相似文献   

18.
Beta-D-O-glucosylation produces a remarkable effect on the peptide backbone of the model peptides derived from serine and threonine. Consequently, this type of glycosylation is responsible for the experimentally observed shift from extended conformations (model peptides) towards the folded conformations (model glycopeptides). The conclusion has been solidly assessed by a combined NMR/MD protocol. Interestingly, the MD (molecular dynamics) results for the glycopeptides point towards the existence of water-bridging molecules between the sugar and peptide moieties, which could explain the stabilization of the folded conformers in aqueous solution.  相似文献   

19.
Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.
Figure
?  相似文献   

20.
BACKGROUND: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure-function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. RESULTS: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His(10)-WThEPO, His(10)-Asn24Cys, His(10)-Asn38Cys, His(10)-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l(-1) from Escherichia coli. Chemical glycosylation with glycosyl-beta-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. CONCLUSIONS: Erythropoietin expressed in E. coli bearing specific Asn-->Cys mutations at natural glycosylation sites can be glycosylated using beta-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号