首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
将全氟联苯、 二(4-氟苯基)苯基氧膦与4-(4′-羟基)苯基-2,3-二氮杂萘酮共聚, 合成了含全氟联苯结构的聚二氮杂萘酮醚氧膦, 再经磺化反应, 制备了含全氟联苯结构的磺化聚二氮杂萘酮醚氧膦(sPEPOF-x, x为含氟重复单元的摩尔分数)质子交换膜. 由于强疏水全氟联苯结构促进了聚合物膜的亲水/疏水微相分离, 提高了质子电导率, 降低了溶胀率, sPEPOF质子交换膜表现出优良的综合性能. 在80 ℃下, sPEPOF-25质子交换膜的溶胀率仅为10%, 约为Nafion 117的一半, 而其电导率为0.099 S/cm, 约为Nafion 117的1.2倍, 且耐氧化稳定性好, 热稳定性高, 具有潜在的应用前景.  相似文献   

2.
含二氮杂萘酮联苯结构聚芳醚是一类综合性能优异的耐高温热塑性树脂,可采用多种方式加工成型。与传统聚芳醚相比,具有低成本、优异的高温力学性能和良好的溶解性等优势,可作为基体树脂应用于制备复合材料。本文主要介绍了近几年在含二氮杂萘酮联苯结构热塑性聚芳醚树脂基复合材料方面的研究进展,包括玻璃纤维增强复合材料、碳纤维增强复合材料...  相似文献   

3.
含1,4-萘结构三元聚芳醚酮的物理性能   总被引:3,自引:0,他引:3  
聚芳醚酮共聚物;含1;4-萘结构三元聚芳醚酮的物理性能  相似文献   

4.
以双酚芴、双酚A型二氮杂萘酮、二氟二苯酮和二氟二苯酮磺酸钠为原料, 通过调整4种单体的比例以及加料顺序控制缩聚反应, 制备了一系列具有不同离子交换容量的含芴和二氮杂萘酮联苯单元的嵌段聚芳醚酮, 简称芴-氮杂萘酮-聚芳醚酮离聚物. 采用黏度测试、傅里叶衰减全反射红外光谱(FTIR-ATR)、氢谱(1H NMR)和热失重(TGA)等分析方法, 对不同结构的芴-氮杂萘酮-聚芳醚酮离聚物的分子量、结构及热稳定性进行了表征. 实验结果表明, 采用控制缩聚法能够制备出不同离子交换容量的高分子量芴-氮杂萘酮-聚芳醚酮离聚物, 该系列离聚物具有良好的热稳定性. 对该系列离聚物膜进行了抗氧化性、水解稳定性、吸水率、耐醇性、离子交换容量和质子传导率测试. 测试结果表明, 该系列离聚物具有良好的抗氧化性、水解稳定性、耐醇性、质子传导率和适当的吸水率.  相似文献   

5.
以4,4'-二羟基苯基正戊酸和4,4'-二氟二苯酮为原料, 二甲基亚砜(DMSO)为溶剂, 采用亲核取代反应合成侧基含羧基的聚芳醚酮均聚物, 进一步与1-萘酚和2-萘酚接枝制备新型含萘可交联聚芳醚酮. 用核磁共振(NMR)、红外光谱(FTIR)、示差扫描量热(DSC)和热重分析(TGA)表征其结构和性能, 含萘聚芳醚酮在常用有机溶剂如N,N-二甲基乙酰胺(DMAc)、DMSO, 四氢呋喃(THF)中有良好的溶解性, 并具有很好的成膜性. DSC测试结果显示, 在170℃热处理2 h的交联聚合物的玻璃化转变温度(Tg)提高40℃. TGA数据显示接枝后的聚合物的5%热失重温度提高40~50℃, 证明其发生交联反应. 结果表明, 新型含萘可交联聚芳醚酮具有热固性树脂的耐溶剂和耐高温特性, 进一步拓宽了聚芳醚酮的应用前景.  相似文献   

6.
采取"二锅二步"的聚合方法以双酚芴、4,4'-二氯二苯砜、双酚AF型二氮杂萘酮、二氟二苯酮磺酸钠为原料制备了含芴-聚芳醚砜憎水链段和双酚AF型二氮杂萘酮-磺化聚芳醚酮亲水链段的两亲嵌段聚芳醚砜酮离聚物,通过调整4种单体的比例以及预聚合、再缩合聚合工艺制备了一系列具有不同链段尺寸的芴-双酚AF型氮杂萘酮-两亲嵌段聚芳醚砜酮离聚物质子交换膜材料.通过黏度测试、傅里叶变换红外光谱(FTIR)、氢谱(1H-NMR)、热失重(TGA)等分析方法,对离聚物的结构和性能进行了表征,用蒸发溶剂法制备了质子交换膜,并考察膜的各种性能.实验结果表明,该系列离聚物的结构可控,热稳定性良好,5 wt%热失重温度均高于250℃;由其制备的质子交换膜具有良好的耐醇性和耐甲醇渗透性能、优异的抗氧化性和水解稳定性、以及适当的质子导电率和吸水率,室温下该系列膜的甲醇渗透率在0.23×10-6~0.28×10-6cm2/s,比Nafion 117具有更好的耐甲醇渗透性能;80℃下该系列膜的质子导电率与30℃时相比呈现倍增趋势,离聚物8e膜的质子导电率在80℃下达到了1.83×10-3S/cm.  相似文献   

7.
将合成的含氰基的双二氮杂萘酮单体与二氟芳香单体进行亲核取代反应, 制备了三种含氰基的新型聚芳醚, 并用TGA, DSC和GPC等分析手段对其综合性能进行表征. 结果表明, 含氰基聚芳醚具有优异的热稳定性(T5%>492 ℃)、较高的玻璃化转变温度(Tg=262~320 ℃)和良好的溶解性能, 易溶于氯代烷烃(如氯仿)和极性非质子性溶剂(如DMAc, DMF, NMP等).  相似文献   

8.
含二氮杂萘酮结构聚芳醚腈酮酮的合成及表征   总被引:1,自引:1,他引:0  
以5种含杂萘联苯结构的单体与2,6-二氯苯腈、1,4-二(4-氟代苯甲酰基)苯为原料进行亲核缩聚反应,制备了一系列含有杂萘联苯结构的新型聚芳醚腈酮酮树脂.其特性粘度在0.51~1.15 dL.g-1之间.采用FT-IR,示差扫描量热仪(DSC),热重分析仪(TGA)对聚合物的结构和性能进行了表征,结果表明,聚芳醚腈酮酮的玻璃化转变温度(Tg)在252~294℃之间,10%热失重温度(Td)在457℃以上,具有优异的耐热性能.聚芳醚腈酮酮均可溶解于N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)、和氯仿等极性非质子型有机溶剂中,聚合物均可溶解于NMP后浇铸得到透明的、韧性好的薄膜.  相似文献   

9.
含萘环结构的聚醚酮醚酮酮的合成与表征   总被引:1,自引:0,他引:1  
二苯酮;含萘环结构的聚醚酮醚酮酮的合成与表征  相似文献   

10.
一种杂环磺化聚芳醚腈酮质子交换膜材料的合成及表征   总被引:8,自引:0,他引:8  
用含二氮杂萘酮结构类双酚DHPZ,3,3′-二磺酸钠基-4,4′-二氟二苯酮,2,6-二氯苯腈以及4,4′-二氟二苯酮,通过缩合共聚合反应合成了一系列不同磺化度、高分子量的磺化聚芳醚腈酮.聚合物特性粘数为0·58~2·0dL/g.用红外光谱(FT-IR),核磁共振谱(1H-NMR)表征了聚合物结构.用差示扫描量热仪(DSC)和热重分析仪(TGA)研究了聚合物的耐热性能,研究表明其玻璃化温度(Tg)可达352℃,5%热失重温度大于500℃.以N-甲基吡咯烷酮为溶剂,溶液浇铸法制备了聚合物膜,并测定了膜的溶胀率以及质子交换能力.结果表明,与Nafion膜相比,磺化聚芳醚腈酮膜在相同的质子交换能力条件下,溶胀率显著降低.  相似文献   

11.
Poly(arylene ether ketone)s (PAEKs) are the most commonly known high‐performance materials used for ion exchange and fuel cell membranes. Described here is the design of novel sulfonated PAEKs (SPAEKs) and nonsulfonated PAEKs containing crown ether units in the main chain, which can be used in sensing applications and ion‐selective membranes. To this end, 4,4′(5′)‐di(hydroxybenzo)‐18‐crown‐6 was synthesized and used as monomer in a step growth polymerization to form crown ether‐containing PAEKs and SPAEKs. The successful synthesis of PAEKs containing 18‐crown‐6 and sulfonate groups was confirmed by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Membranes are fabricated from the sulfonated polymers. Potassium ion transport properties of the SPAEK and crown ether‐containing SPAEK membranes are assessed by diffusion dialysis. Potassium ion diffusion in the crown ether‐containing SPAEK membranes is almost four times lower than K+ diffusion in the native polymer membranes, without crown ether. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2786–2793  相似文献   

12.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   

13.
A new bisphenol monomer containing a pair of electron‐rich tetra‐arylmethane units was designed and synthesized. Based on this monomer, along with commercial 4,4′‐(hexafluoroisopropylidene)diphenol A and 4,4′‐difluorobenzophenone, a series of novel poly(arylene ether ketone)s containing octasulfonated segments of varying molar percentage (x) (6F‐SPAEK‐x) were successfully synthesized by polycondensation reactions, followed by sulfonation. Tough, flexible, and transparent membranes, exhibiting excellent thermal stabilities and mechanical properties were obtained by casting. 6F‐SPAEK‐x samples exhibited appropriate water uptake and swelling ratios at moderate ion exchange capacities (IECs) and excellent proton conductivities. The highest proton conductivity (215 mS cm−1) is observed for hydrated 6F‐SPAEK‐15 (IEC = 1.68 meq g−1) at 100 °C, which is more than 1.5 times that of Nafion 117. Furthermore, the 6F‐SPAEK‐10 membrane exhibited comparable proton conductivity (102 mS cm−1) to that of Nafion 117 at 80 °C, with a relatively low IEC value (1.26 meq g−1). Even under 30% relative humidity, the 6F‐SPAEK‐20 membrane (2.06 meq g−1) showed adequate conductivity (2.1 mS cm−1) compared with Nafion 117 (3.4 mS cm−1). The excellent comprehensive properties of these membranes are attributed to well‐defined nanophase‐separated structures promoted by strong polarity differences between highly ionized and fluorinated hydrophobic segments. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 25–37  相似文献   

14.
A series of block sulfonated poly(arylene ether ketone) (SPAEK) copolymers with different block lengths and ionic contents were synthesized by a two‐stage process. The morphology of these block SPAEK copolymers was investigated by various methods, such as differential scanning calorimetry (DSC), transmission electron microscope (TEM), and small angle X‐ray scattering (SAXS). Dark colored ionic domains of hundreds of nanometers spreading as a cloud‐like belt were observed in TEM images. The sizes of the ionic domains as a function of block copolymer composition were determined from SAXS curves. The results for the evolution of ionic domains revealed that the block copolymers exhibited more clearly phase‐separated microstructure with increasing ionic contents and hydrophobic sequence lengths. Proton conductivity is closely related to the microstructure, especially the presence of large interconnected ionic domains or ionic channels. Block SPAEK membranes have interconnected ionic clusters to provide continuous hydrophilic channels, resulting in higher proton conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A series of proton exchange membranes based on sulfonated polyarylene ether ketones(SPAEKs) was used to study the effect of sulfonation degree on proton conductivity, methanol permeation and performance of direct methanol fuel cells(DMFCs). Dependences of physical characteristics of the membranes, i. e., proton conductivity, water uptake, swelling ratio, methanol permeability and ion exchange capacity(IEC) were systematically studied. Both methanol permeability and proton conductivity of the SPAEK membrane grow rapidly as the increase in sulfonation degree since methanol molecules and protons share the same transfer channel. However,the methanol permeability plays more important role comparing to proton conductivity. As a result, the SPAEK membrane with a medium sulfonation degree(60%) was found to yield the best performance in a DMFC due to the acquirement of balanced conductivity and methanol permeability.  相似文献   

16.
A bisphenol monomer (2,5‐dimethoxy)phenylhydroquinone was prepared and further polymerized to obtain poly(arylene ether ketone) copolymers containing methoxy groups. After demethylation and sulfobutylation, a series of novel poly(arylene ether ketone)s bearing pendant sulfonic acid group (SPAEKs) with different sulfonation content were obtained. The chemical structures of all the copolymers were analyzed by 1H NMR and 13C NMR spectra. Flexible and tough membranes with reasonably good mechanical properties were prepared. The resulting side‐chain‐type SPAEK membranes showed good dimensional stability, and their water uptake and swelling ratio were lower than those of conventional main‐chain‐type SPAEK membranes with similar ion exchange capacity. Proton conductivities of these side‐chain‐type sulfonated copolymers were higher than 0.01 S/cm and increased gradually with increasing temperature. Their methanol permeability values were in the range of 1.97 × 10?7–5.81 × 10?7 cm2/s, which were much lower than that of Nafion 117. A combination of suitable proton conductivities, low water uptake, low swelling ratio, and high methanol resistance for these side‐chain‐type SPAEK films indicated that they may be good candidate material for proton exchange membrane in fuel cell applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
将纳米钛酸钡(BT)在环己烷中超声分散制得均匀的悬浊液后,与磺化聚醚酮的二甲亚砜溶液均匀混合,然后采用流延法制备了掺杂质子交换膜。 通过环镜扫描电子显微镜表征发现BT在膜中分散均匀,通过吸水率、溶剂吸收率、尺寸变化、电导率、甲醇透过率、力学性能及稳定性等测试发现掺杂膜虽然电导率有所下降,但是其抗溶胀性、稳定性和力学性能显著提高。  相似文献   

18.
The synthesis and characterization of new di‐ and tetra‐sulfonated ether diketone monomers are described. From these monomers, a wide series of sulfonated poly(arylene ether ketone)s (SPAEK) are synthesized by varying the sulfonic acid repartition along the polymer backbones. Their chemical structures are thoroughly characterized by NMR. From these polymers tough membranes are obtained from solution casting method and their water uptake, ionic conductivity, and water/gas permeation properties are determined and compared with those of Nafion membrane. Preliminary fuel cell tests show that SPAEK membranes are promising candidates for fuel cell application. This work brings new insights concerning the beneficial effects of introducing densely sulfonated monomers in a polyarylether macromolecular structure along with fluorinated groups improving conductivity while reducing unwanted excessive swelling. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 771–777  相似文献   

19.
A series of novel organic-inorganic hybrid proton-conducting electrolyte membranes with silane-crosslinked sulfonated poly(aryl ether ketone)(SC-SPAEK) networks was prepared via a simple procedure that includes solution casting and acid treatment. The organosilicon pendants of the silane-grafted SPAEK, which were expected to serve as coupling and crosslinking agents, were found to play a key role in the homogenous dispersion of inorganic particles and improved the performance of hybrid membranes. The hybrid membranes exhibited enhanced proton conductivity, and SC-SPAEK/TiO2-4 showed an extremely high proton conductivity of 0.1472 S/cm at 100℃. The crosslinked hybrid membranes also demonstrated good chemical resistance, oxidative stability, and mechanical properties. The crosslinked hybrid membranes with excellent comprehensive performance may be a promising material for proton exchange membrane fuel cells.  相似文献   

20.
In operation of polymer electrolyte membrane fuel cell or direct methanol fuel cell, ·OH radicals are the major cause for the degradation of polymer electrolyte membrane. In order to enhance its antioxidation stability, cerium ion (Ce3+, CE), an ·OH radical quencher, is introduced to membrane, as it converts the ·OH radicals into inactive chemicals. In this study, aminoethyl‐15‐crown‐5 (CRE) is grafted on the sulfonated poly(arylene ether ketone) (SPAEK) to prevent the migration of CE ions from the membrane for long‐term antioxidation stability, as CRE forms a coordination complex with CE. The chemical and physical structures of the CRE grafted SPAEK are examined using proton nuclear magnetic resonance, energy dispersive X‐ray, and small‐angle X‐ray scattering spectroscopy. The physical properties of the CRE grafted SPAEK membrane are investigated and compared with those of the CRE blended and CE blended ones. While the grafting of CRE does not significantly affect the thermal and mechanical and water uptake behaviors of membranes, it leads to a significant improvement of antidegradation effect compared with other blend systems according to Fenton's test. The proton conductivity decreases with addition of CE but its effect is lessened by introduction of CRE. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 101–109  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号