首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Specific heat measurements of a single crystal of the organic metal (BEDT-TTF)2KHg(SCN)4 have been carried out at low temperatures and under a magnetic field of up to 14 T. A jump in the specific heat of about 0.1 J/mol·K, which corresponds to the antiferromagnetic phase transition, has been observed. The magnetic field is found to decrease the transition temperature at any field orientation. The strongest effect was found to take place in the field direction along the highly conducting ac plane. Zh. éksp. Teor. Fiz. 113, 1058–1063 (March 1998) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

2.
用超高真空扫描隧道显微镜首次同时清晰地分辨出Si(111) (7×7)表面每个元胞中的 12个顶戴原子和 6个静止原子,这 6个静止原子的亮度与无层错半元胞内中心顶戴原子的亮度基本相同. 第一性原理计算图像和STM实验结果完全符合,针尖的尺度小于 7 时,可以完全同时分辨出Si(111) (7×7)表面的静止原子.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
It is known that the use of Bi surfactant (unlike Sb) upon the growth of Ge layers on Si(111) increases the contrast between Ge and Si atoms in a scanning tunneling microscope. This makes it possible to distinguish the Ge and Si surfaces. This effect is studied using computer simulation based on the density functional theory. To explain the observed difference between the Ge and Si layers, both structural and electronic effects are considered. The local density of electronic states, as well as the corresponding decay length to vacuum, has been calculated for each of the surfaces. The simulation results have been compared to the previous scanning tunneling microscopy data.  相似文献   

16.
17.
18.
We have observed the dependence of the scanning tunneling microscopy (STM) imaged atom intensity within the (7x7) unit cell on stepped Si(111) as a function of the tunneling voltage. Pronounced differences from the corresponding atom intensity on the flat surface are observed for the contrast of atoms on the low versus the high side of the step and for the contrast between the faulted versus unfaulted subcells of the (7x7) structure. These differences can be accounted for by changes in the electronic structure within the (7x7) subcells adjacent to the step. Calculations of the local density of states and the STM images using a tight-binding method are in excellent agreement with the experimental results.  相似文献   

19.
At low tunneling resistance, scanning tunneling microscopy (STM) images of a Rh(100) surface with adsorbed hydrogen reproducibly show protrusions in all bridge sites of the surface, leading to a naive interpretation of all bridge sites being occupied with H atoms. Using quantitative low-energy electron diffraction and temperature programmed desorption we find a much lower H coverage, with most H atoms in fourfold hollow sites. Density functional theory calculations show that the STM result is due to the influence of the tip, attracting the mobile H atoms into bridge sites. This demonstrates that STM images of highly mobile adsorbates can be strongly misleading and underlines the importance of additional analysis techniques.  相似文献   

20.
The spatially inhomogeneous decomposition and desorption reaction of oxide layers with coverage 1-0.3 monolayers (ML) from a silicon (100) surface has been studied using scanning tunneling microscopy (STM). After desorption, microscopic changes to the (2 × 1) reconstruction produce two variations on the dimer row reconstruction with decreased surface atom density. A (2 × n) vacancy chain reconstruction and a c(4 × 4) incomplete row reconstruction were observed; a structure for the latter is proposed. Both reconstructions are metastable, reforming the (2 × 1) reconstruction upon heating. At greater length scales during desorption from an initial 1.0 ML coverage, the mesoscopic changes to the surface structure include pitting and roughening, with up to a measured 20 fold increase in the edge density as compared to the clean Si(100) surface.

These structural changes suggest a reaction mechanism involving a substantial rearrangement of the substrate silicon. From an initial 1.0 ML oxygen coverage, using measured void size distributions at total desorption levels of 13% and below — before voids have begun to coalesce — the evolution of void sizes during initial desorption can be followed. A mechanism for desorption is proposed in which silicon atoms must diffuse from adjacent clean surface area to the oxide boundary, producing a reactive complex from which SiO is desorbed. Void growth rates derived from two rate limiting cases for this desorption reaction mechanism can be compared to measured results. We show that the measured void area evolution is consistent with a reaction mechanism where the rate limiting step for monolayer desorption is the promotion of a silicon atom in a lattice site to a mobile monomer within the void.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号