首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report experimental and theoretical results on picosecond time resolved photoluminescence spectroscopy of 2D-excitons in multiquantum well structures. A theoretical model is formulated which includes the cooling of the free exciton gas by acoustical phonon emission and the localization of excitons due to interface defects. The cooling rate of 2D excitons is shown to be enhanced with respect to the 3D case.  相似文献   

2.
3.
4.
We report on photoluminescence and Raman scattering performed at low temperature (T =  10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL =  100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 =  285.6 cm−1forL =  11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.  相似文献   

5.
It is found that additional illumination by photons with energies above the band gap width in barrier layers leads to a strong (up to 40% in depth at the values of the illumination power used in this work) modulation of the light intensity elastically scattered upon resonant excitation of exciton states in quantum wells of GaAs/AlGaAs structures. Evidently, the effect observed is associated with the redistribution of oscillator strengths of exciton transitions due to the formation of three-particle exciton complexes (trions). These complexes arise through preferred capture of nonequilibrium like charge carriers (in our case, holes).  相似文献   

6.
Single-photon emitters and detectors are key devices for realizing secure communications by single-photon-based cryptography and single-photon-based quantum computing. For the establishment of these technologies, we need to understand the electronic structures of single and multiple excitons. Therefore, we have studied their emissions via the micro-photoluminescence (μ-PL) spectra of strain-free GaAs/AlGaAs single quantum dots, using excitation power dependence, time-resolved, and single-photon correlation measurements. Under pulsed excitation, we observed clear photon antibunching and bunching by auto- and cross-correlation measurements. From these results, we found that the emission peaks observed in the μ-PL spectra originated from exciton, charged exciton, and biexciton states.  相似文献   

7.
8.
9.
10.
Scaccabarozzi L  Fejer MM  Huo Y  Fan S  Yu X  Harris JS 《Optics letters》2006,31(24):3626-3628
We demonstrate second-harmonic generation (SHG) from sub-micrometer-sized AlGaAs/AlxOy artificially birefringent waveguides. The normalized conversion efficiency is the highest ever reported. We further enhanced the SHG using a waveguide-embedded cavity formed by dichroic mirrors. Resonant enhancements as high as approximately 10x were observed. Such devices could be potentially used as highly efficient, ultracompact frequency converters in integrated photonic circuits.  相似文献   

11.
The operation of a unipolar quantum cascade light-emitting diode based on the material system GaAs/AlGaAs is reported. The LED operates at a wavelength of 6.9 μm. Detailed analysis of the electroluminescence spectra shows a linewidth as narrow as 14 meV at cryogenic temperatures, increasing to 20 meV at room temperature. For typical drive-current densities of 1 kA/cm2 the optical output power lies in the ten 10 nW range. Additional absorption and photocurrent measurements provide a complete characterization of the mid-infrared emitter.  相似文献   

12.
The interface of wet oxidized Al0.97Ga0.03As/GaAs in a distributed Bragg reflector (DBR) structure has been studied by means of transmission electron microscopy and Raman spectroscopy. With the extension of oxidation time, the oxide/GaAs interfaces are not abrupt any more. There is an amorphous film near the oxide/GaAs interface, which is Ga2O3 related to the prolonged heating. In the samples oxidized for 10 and 20 min, there are some fissures along the oxidized AlGaAs/GaAs interfaces. In the samples oxidized or in situ annealed for long time, no such fissures are present due to the complete removal of the volatile products. PACS 68.55.Jk; 68.55.Nq; 68.65.+g; 81.65.Mq  相似文献   

13.
In this work, we present a detailed study on the optical properties of two GaAs/Al0.35Ga0.65As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e1-hh1 transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed.  相似文献   

14.
Nuclear resonant scattering techniques can be used to study both fast and slow dynamics of Mössbauer nuclei. The influence of rotational dynamics in molecular systems is studied applying three types of scattering techniques: (1) Synchrotron radiation perturbed angular correlation (SRPAC) yields direct and quantitative evidence for rotational dynamics in the μs-ns regime. (2) Nuclear inelastic scattering (NIS) monitors the relative influence of intra- and intermolecular forces via the vibrational density of states, which can be influenced by the onset of molecular rotation. (3) In nuclear forward scattering (NFS), information both on rotational and on translational dynamics can be extracted. Results using SRPAC and NIS on a plastic crystal and NFS on ferrocene confined in a molecular sieve are presented.  相似文献   

15.
Self-consistent calculations have been performed to obtain the wave functions and energy subbands of the two-dimensional electrons confined in a single quantum well of a AlxGa1?xAs/GaAs/AlxGa1?xAs heterostructure. The wave functions of the two-dimensional electron gas are found to be easily controlled by an external gate voltage applied between the AlGaAs-barriers, indicating a capability of fabricating a novel quantum well device, a modulation-doped single quantum well transistor.  相似文献   

16.
Electronic states in solids with disorder give rise to an elastic (Rayleigh) contribution to the scattering spectrum which becomes resonantly enhanced for excitation in the electronic transition. It is shown theoretically that from this resonant Rayleigh process, if temporally resolved, the coherence time of the electronic states may be deduced. Experimentally this is demonstrated for the first time by studying the n = 1 heavy-hole exciton in GaAs/AlGaAs quantum well structures. Employing picosecond time-resolved spectroscopy and analyzing the data within the developed theory, coherence times are found between 5 and 30 ps in agreement with earlier results obtained by non-linear optical techniques.  相似文献   

17.
The influence of photoexcited carriers on the dynamics of the absorption spectra of GaAs/AlxGa1−2x As multilayer quantum wells is investigated experimentally. It is found that at quasiparticle densities all the way up to 1011 cm−2 the saturation of the excitonic absorption is due to both a decrease of oscillator strength and broadening of the excitonic lines. It is shown that in the case of femtosecond resonance laser exci-tation the decrease of oscillator strength is due to free electron-hole pairs, while the broadening and energy shift of the excitonic lines are due to the exciton-exciton interaction. The lifetimes of free electron-hole pairs and excitons (≈65 ps and ≈410 ps, respectively) are determined from the exponential decrease of the change in the oscillator strength and in the width and energy position of the excitonic lines. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 3, 139–144 (10 August 1997)  相似文献   

18.
We have presented a theoretical calculation of the differential cross section for the electron Raman scattering process associated with the interface optical phonon modes in cylindrical GaAs quantum dots (QDs) with a AlAs matrix. We consider the Fröhlich electron–phonon interaction in the framework of the dielectric continuum approach. The selection rules for the processes are studied. Singularities are found to be sensitively size‐dependent, and, by varying the size of the QDs, it is possible to control the frequency shift in the Raman spectra. A discussion of the phonon behavior for QDs with different size is presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We report optical double resonant enhancement of Raman scattering in a new double microcavity geometry. The design allows almost backscattering geometries, providing easy access to the excitations' in-plane dispersion. The cavity is used to study the phonon spectra of a finite GaAs/AlAs superlattice. A new type of "standing optical vibration" is demonstrated involving the GaAs confined phonons with a standing wave envelope determined by the superlattice thickness. A strong dispersion of the first order standing wave mode is observed, as well as its anticrossing with higher order confined modes of the same symmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号