首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The present study was carried out to follow the effect of CO coadsorption on the properties of NO adsorbed on the same Co2+ sites. As the activation of the different molecules was found to be specially pronounced for Cu+ in MFI and FAU zeolites, the coadsorption of CO and NO on Cu+ sites was also examined. Our previous studies reveled that the presence of the electron donor ammonia and pyridine molecules strongly weakened the multiple bond in NO molecule bonded to the same Cu+ cation. The present IR experiments evidenced that CO acted as an electron acceptor. The flow of an electron density from the antibonding π* orbital of NO via Co2+ or Cu+ to the antibonding π* orbital of CO results in strengthening of the NO bond and in weakening of the CO bond.  相似文献   

2.
Adsorption isotherms of nitrogen monoxide (NO) and in situ EPR spectra of adsorbed NO on mordenite zeolites (MOR) of different cation types (HM, NaM and CaM) are measured at different temperatures to elucidate the effect of the strong adsorption promoted by the enhancement of potential field in micropore of MOR (micropore filling) as well as the electrostatic interaction in MOR on NO adsorption. The NO molecules adsorb irreversibly and fill up the micropore of MOR at 201 K, above the critical temperature of NO, regardless of the kind of cation species. The NO adsorption takes place even at 273 K. In the adsorption at 273 K, the strength of electrostatic field formed by cation sites affects the adsorptivity and the order of saturation amount of adsorption (V s) corresponds to that of the electrostatic field strength. EPR results show that NO molecules strongly interact with cation sites in MOR and disproponation reaction of NO take place on CaM.  相似文献   

3.
The adsorption behaviors of CO2 and CH4 on new siliceous zeolites JSR and NanJSR (n = 2, 8, 16) were simulated using the Grand Canonical Monte Carlo method. The adsorption isotherms of CO2 became higher with an increase in the Na+ number at a low pressure range (<150 kPa), whereas the isotherms showed a crossover with increasing pressure and the adsorption amount became smaller at a high pressure range (>850 kPa). With an increase in Na+ number, the pore volume decreased as the pore space was occupied by increasing Na+ ions. Additionally, two energy peaks on the interaction energy curves implied that CO2 was adsorbed on two active sites. On the other hand, the adsorption amount of CH4 decreased with an increase in the Na+ number and only one energy peak was observed. Adsorption isotherms were well fitted with the Langmuir and Freundlich equations up to 1000 kPa and the adsorption affinity of CO2 on Na16JSR zeolite was highest. The adsorption capacities of CO2 in the studied zeolites were up to 38 times higher than those of CH4. Diffusion constants of CO2 and CH4 decreased with an increase in the adsorbed amount and Na+ number. Considering the adsorbed amount, adsorption selectivity and affinity, zeolites JSR with a low Na+ number (JSR and Na2JSR) is a good candidate for a pressure swing adsorption in the separation of CO2/CH4 mixture whereas JSR zeolites with high Na+ ratios (Na16JSR and Na8JSR) may be a better selection for a vacuum swing adsorption.  相似文献   

4.
Picosecond multiphoton ionization of (NO)mArn clusters produced in a supersonic expansion of NO/Ar gas mixtures has been studied using time-of-flight mass spectrometry. Two-photon ionization with 266 nm photons show that dilute gas mixtures (1% NO/Ar) yield clusters limited to m≤7, but with as many as 37 argon atoms. Magic numbers are observed for NO+Ar12, NO+Ar18, (NO) 2 + Ar17, NO+Ar22, and (NO) 2 + Ar21 and are understood in terms of solvation of the NO+ and (NO) 2 + by argon in icosahedral arrangements. Four-photon ionization with 532 nm light produces dissociation of the clusters to yield only NO+Arn with n up to 54. This distribution exhibits an additional magic number at n=54, consistent with the completion of a second solvation sphere about the NO+. The known wavelength dependence for photodissociation of (NO) 2 + and (NO) 3 + and comparison of MPI spectra obtained with 266, 355, and 532 nm light indicate that the dissociation is occurring in the cluster ions.  相似文献   

5.
Commercial H-ZSM5 zeolites with a Si/Al ratio equal to 25 and 75 have been exchanged using copper acetate aqueous solutions with different concentrations. Copper saturation is reached at the 130 and 230% level of Cu exchange for Si/Al equal to 25 and 75, respectively, although FTIR spectra showed that a fraction of Al-OH exchange positions is still available. Catalytic activity experiments of NO decomposition have been carried out at 450°C in a fixed bed reactor. Catalysts have been characterized with H2 TPR and NO adsorption experiments at 120°C. All samples are partially reduced upon thermal treatment under inert flow (He) leading to the formation of Cu+-containing sites in addition to a fraction of differently reduced copper species. The Cu+-containing sites, also responsible for NO adsorption and subsequent production of N2O at 120°C, have been proposed to be the active centers. A quantitative estimation of these species, likely having multi-ionic structure, has been provided.  相似文献   

6.
Ab initio cluster quantum chemical calculations at the Hartree–Fock (HF/Lanl2dz) and correlated second-order Moller–Plesset perturbation theory (MP2/Lanl2dz) levels were performed for NO and N2O interactions with Ag+ and Cu+ ion-exchanged zeolites. The interaction energies were estimated in a conventional way and also corrected for basis set superposition errors. It was shown that the highly dispersed Ag+ counterions establish twofold coordination to the lattice oxygens on the zeolite surface, similar to the case of Cu+ ions. However, both NO and N2O bind relatively strongly to the Cu active sites of Cu+ ion-exchanged zeolites than those of the Ag+ site of the Ag+ ion-exchanged zeolites. Based on the results of these calculations, the two different forms of adsorption for these molecules on the catalyst surface, the nature of their binding and characteristics of the adsorption properties have been discussed. Finally, some comparisons with the results obtained by a variety of density functional theory calculations on target systems have been presented.  相似文献   

7.
The IR spectra of decationized zeolites with adsorbed bases have been analyzed. A correlation between the shift (OH) of the center of gravity of the set of bandsA,B, andC (components of the (OH) vibration) and the strength of the H-bond between the bridging hydroxyl groups and the molecule of a base has been found. This is evidence in support of the Fermi-resonance nature of the perturbations of the (OH) vibration. Spectral data on the adsorption of H2O and MeOH on decationized zcolitcs that cannot be interpreted in terms of the formation of complexes with strong H-bonds have been obtained. Arguments in favor of the formation of H3O+ and MeOH2 + ions linked to the neighboring oxygen atoms in the zeolitc latticevia two identical hydrogen bridges have been presented.Na—Y zeolites were synthesized by N. N. FeoktistovaTranslated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1377–1381, June, 1996.  相似文献   

8.
The 2,2,6,6-tetramethylpiperidine nitroxide radical (TMPN) was studied by EPR and electronic absorption spectroscopy in LiClO4 solutions in various organic solvents. The14N hyperfine structure, together with the exchange broadening of its components in EPR and the electronic n* transition in the visible region, provide useful information about Li+-TMPN complexes. Both spectroscopic methods prove that the oxygen atom of TMPN was involved in the Li+-TMPN interaction. The complex formation constants 15.61, 2.50, 0.75, 0.61, 0.75, and 0.33 dm3-mol–1 were found in nitromethane, benzonitrile, acetonitrile, propylene carbonate, acetone and tetrahydrofurane, respectively. These formation constants were correlated with donor and acceptor numbers of the solvents and interpreted in terms of competitive Li+-TMPN, solvent-Li+, and solvent-TMPN interactions.  相似文献   

9.
10.
The isomerization reactions of the glycine radical cation, from [NH2CH2COOH]+, I, to [NH3CHCOOH]+, II, or [NH2CHC(OH)2]+, III, in the presence of a water molecule have been studied theoretically. The water molecule reduces dramatically the energy barriers of the III and IIII tautomerizations owing to a change in the nature of the process. However, the role of the water molecule depends on the kind of isomerization, the catalytic effect being more important for the IIII reaction. As a consequence, the preferred mechanism for the interconversion of glycine radical cation I to the stablest isomer, III, is the direct one-step mechanism instead of the two step (III and IIIII) process found for isolated [NH2CH2COOH]+. When using ammonia as a solvent molecule, a spontaneous proton-transfer process from [NH2CH2COOH]+ to NH3 is observed and so no tautomerization reactions take place. This behavior is the same as that observed in aqueous solution, as has been confirmed by continuum model calculations.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

11.
The adsorption of NO molecules on the perfect and defective (110) surfaces of SnO2 was studied with first-principles methods at the density-functional theory level. It was found that NO mainly interacts via the nitrogen atom with the bridging oxygens of the stoichiometric surface while the coordinatively unsaturated surface Sn atoms are less reactive. On the oxygen-deficient surface, NO is preferentially adsorbed at the vacancy positions, with the nitrogen atom close to the former surface oxygen site. Regardless of the adsorption site, the unpaired electron is located mainly on the NO molecule and only partly on surface Sn atoms. The results for the SnO2 surface are compared to literature results on the isostructural TiO2 rutile (110) surface. Dedicated to Professor Karl Jug on the occasion of his 65th birthday  相似文献   

12.
CW-EPR studies of NO adsorbed on sodium ion-exchanged zeolites were focused on the geometrical structure of NO monoradical and (NO)2 biradical formed on zeolites. The EPR spectrum of NO monoradical adsorbed on zeolite can be characterized by the three different g-tensor components and the resolved y-component hyperfine coupling with the 14N nucleus. Among the g-tensor components, the value of g(zz) is very sensitive to the local environment of zeolite and becomes a measure of the electrostatic field in zeolite. The temperature dependence of the g-tensor demonstrated the presence of two states of the Na-NO adduct, in rigid and rotational states. The EPR spectra of NO adsorbed on alkaline metal ion-exchanged zeolite and their temperature dependency are essentially the same as that on sodium ion-exchanged zeolite. On the other hand, for NO adsorbed on copper ion-exchanged zeolite it is known that the magnetic interaction between NO molecule and paramagnetic copper ion are observable in the spectra recorded at low temperature. The signals assigned to (NO)2 biradical were detected for EPR spectrum of NO adsorbed on Na-LTA. CW-EPR spectra as well as their theoretical calculation suggested that the two NO molecules are aligned along their N-O bond axes. A new procedure for automatical EPR simulation is described which makes it possible to analyze EPR spectrum easily. In the last part of this paper, some instances when other nitrogen oxides were used as a probe molecule to characterize the zeolite structure, chemical properties of zeolites, and dynamics of small molecules were described on the basis of selected literature data reported recently.  相似文献   

13.
The formation of complexes and disproportionation of nitrogen oxides (NO, N2O) on cationic forms of LTA, FAU, and MOR zeolites was investigated by diffuse-reflectance IR spectroscopy. N2O is adsorbed on the samples under study in the molecular form and the frequencies of the first overtone of the stretching vibrations ν10–2 and the combination bands of the stretching vibrations with other vibrational modes for N2O complexes with cationic sites in zeolites (ν30–1 + ν10–1, ν10–1 + δ0–2) are more significantly influenced by the nature of the zeolite. The presence of several IR bands in the region of 2400–2600 cm−1 (the ν10–1 + δ0–2 transitions) for different zeolite types was explained by the availability of different localization sites for cations in these zeolites. The frequencies in this region also depend on the nature of the cation (its charge and radius). The data can be explained by the specific geometry of the N2O complex formed, presumably two-point adsorption of N2O on a cation and a neighboring oxygen atom of the framework. Adsorption of CO or CH4 on the samples with preliminarily adsorbed N2O at 20–180 °C does not result in any oxidation of these molecules. NO+ and N2O3 species formed by disproportionation of NO are capable of oxidizing CO and CH4 molecules to CO2, whereas NOx is reduced simultaneously to N2 or N2O. The peculiarities in the behavior of cationic forms of different zeolites with respect to adsorbed nitrogen oxides determined by different density and localization of cations have been established.  相似文献   

14.
From fundamental and overtone spectra of CO, NO and D2 adsorbed in zeolites NaCaA the constants of the internuclear potential can be derived for the adsorbed state. As the interactions with the zeolite surface are dominated by van der Waals forces, they remain less affected by adsorption. In contrast to diatomics adsorbed on transition metal surfaces, no considerable alteration of bond energy can be observed. The frequency shift is essentially due to the change of the harmonic force constant and indicates the interaction potential depending almost linearly on the vibrational state. The heterogeneity of the cation distribution inside the zeolites is reflected in the broadening of the adsorbate bands.  相似文献   

15.
Adsorption of CO2 as probe molecule on alkali-metal zeolites of MFI structure was investigated by joint volumetry–calorimetry. Consideration was given to the interpretation of the heat evolved when a probe molecule is adsorbed on the surface. In particular, the number and the strength of adsorption sites are discussed as functions of zeolite structure, concentration, and nature of extra-framework cation. The adsorption heats (q iso) of CO2 interaction with alkali-metal cations decrease for MFI zeolite with high Si/Al in the sequence Li+ > Na+ > K+ from 54 kJ/mol to 49 and 43 kJ/mol, respectively. In addition, the adsorption heats are influenced by concentration of Al in the framework. This phenomenon is attributed to formation of bridged CO2 adsorption complexes formed between two cations. On the base of quantitative analysis of adsorption processes, presence of geminal adsorption complexes was suggested for adsorption at higher equilibrium pressures.  相似文献   

16.
Infrared spectra of chlorodifluoromethane (CHClF2) adsorbed on titanium dioxide (TiO2) at room temperature have been investigated for the first time. From the comparison between the adsorption characteristics and the gas-phase spectra it can be deduced that the molecule interacts with the surface Lewis acid site (Ti4+) mainly through the Cl atom even if also the adsorption with one F atom is also observed. Moreover, the spectra show the presence of H-bonds between the CH group and the surface Lewis basic site (OH or O2−). In order to obtain more information on the molecule orientation and the variation of the structural parameters, a DFT-B3LYP study has been carried out considering the anatase (1 0 1) surface and evaluating the adsorption energetics in terms of interaction, distortion and binding energies. The obtained geometries confirm that both the acid-base interactions through Cl or F atoms are possible and suggest the formation of one H-bond between the CH group of the molecule and the Lewis basic site of the surface. The calculated vibrational frequencies of the adsorbed molecule have been found to be in reasonable agreement with the experimental data.  相似文献   

17.
The effect of the gold particle size, temperature of the model gold catalyst, and NO pressure on the composition of the adsorption layer was studied by in situ XPS and STM methods. Adsorption of nitric oxide was carried out on gold nanoparticles with a mean size of 2?C7 nm prepared on the thin film surface of alumina. In high-vacuum conditions (P NO ?? 10?5 Pa), only atomically adsorbed nitrogen is formed on the surface of gold nanoparticles. At about 1 Pa pressure of NO and in the temperature range from 325 to 475 K, atomically adsorbed nitrogen coexists with the N2O adsorption complex. The surface concentration of the adsorbed species changes with a change in both the mean gold particle size and adsorption temperature. The saturation coverage of the surface with the nitrogen-containing complexes is observed for the sample with a mean size of gold particles of 4 nm. The surface of these samples is mainly covered with atomically adsorbed nitrogen, the saturation coverage of adsorbed nitrogen of about ??0.6 monolayer is attained at T = 473 K. The change in the composition of the adsorption layer with temperature of the catalysts agrees with the literature data on the corresponding temperature dependence of the selectivity of N2 formation observed in the catalytic reduction of NO with carbon monoxide on the Au/Al2O3 catalyst. The dependences of the composition of the adsorption layer on the mean size of Au nanoparticles (size effect) and temperature of the catalyst are explained by the sensitivity of NO adsorption to specific features of the gold surface.  相似文献   

18.
Density functional theory method with full geometry optimization was used to study the adsorption of nitroamine (NH2NO2) on Al13 cluster. Both dissociative and nondissociative adsorption structures were predicted with different NH2NO2 molecule orientations on Al13 cluster surfaces. In dissociative chemisorption, the main decomposition products of NH2NO2 are O atom(s) and NH2NO or NH2N species. The O atoms being ruptured from the N?CO bond form strong Al?CO bonds with the neighboring Al around the adsorbed sites. In addition, the species obtained as a result of O atom elimination remains bonded to the surface. The largest adsorption energy is ?737.66?kJ/mol when the NH2NO2 molecule decomposes into two O atoms and a NH2N fragment. For nondissociative adsorption, the seriously deformed nitroamine forms various N?CO?CAl bonding configurations with Al. The significant charge transfer occurs for all adsorption configurations. The most charge transfer is 2.068 e from the Al cluster surface to the fragments of the decomposed NH2NO2. The change of the electronic structures is obvious due to the adsorption or dissociation of NH2NO2 molecule. Nitroamine readily oxidizes the aluminum surface of the Al13 cluster.  相似文献   

19.
Diffuse-reflectance IR spectra of methane adsorbed on high-silica NaZSM-5 and HZSM-5 zeolites point to a stronger adsorption of methane on sodium cations than on protons. For the asymmetric stretching vibration 3, this form of adsorption is characterized by a doublet with band maxima at 2980 and 3010 cm–1. For the fully symmetric stretching vibration 1, it is characterized by a singlet with a maximum at 2880 cm–1. Methane is also adsorbed on NaZSM-5 in a weaker form, which is characterized by absorption bands with maxima at 3002 (3) and 2887 (1) cm–1. The weaker form of methane adsorption on acidic bridging hydroxy groups of HZSM-5 is characterized by absorption bands at 3001 and 2887 cm–1 (3 and 1, respectively). A difference between this form of adsorption and weak adsorption on sodium-exchanged zeolite reveals itself in the somewhat higher intensity of the band at 2887 cm–1. For methane adsorbed on NaZSM-5, the frequencies of deformational vibrations and a spectrum in the near IR region are obtained for the first time. It was found that the perturbance of adsorbed methane molecules is seen in the spectrum as in the low-frequency shifts of most of the bands that appear due to composite vibrations and overtones and as new adsorption bands that were not observed for gaseous methane.  相似文献   

20.
13C NMR spectra of CO and CO2 molecules adsorbed in zeolites of A, X, Y type were measured as a function of temperature and pore filling. In contrast to other systems, strong resonance shifts to lower fields appear when CO is adsorbed in decationated zeolites. These shifts can be interpteted by an interaction with adsorption sites of Lewis type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号