共查询到16条相似文献,搜索用时 78 毫秒
1.
采用溶胶-凝胶(Sol-gel)法制备了Li+共掺杂的Er3+-Yb3+:TiO2粉末.976 nm激光激发下在波长350~1700nm范围内观察到了紫外、蓝色、绿色和红色上转换发光和红外下转换发光.随着Li+共掺杂浓度由0增大到20mol%,Er3+-Yb3+:TiO2的紫外、可见和红外发光强度同步增强.低Li+共掺杂浓度引起的Li+固溶以及高Li+共掺杂浓度引起的相变过程相继破坏了Er3+的晶体场对称性,导致紫外、可见和红外发光显著增强.结果表明共掺杂Li+是一种提高Er3+掺杂材料发光性能的有效方法. 相似文献
2.
3.
痕量双掺Sm3+和Gd3+对Y2O2S:Eu3+发光特性的影响 总被引:3,自引:0,他引:3
通过对Y2O2SEu3+红色荧光粉痕量引入Sm3+和Gd3+的研究, 发现可有效地增强发光强度, 明显改善其电压特性(发射强度与激发电压间的关系特性), 且不影响材料的其他物理化学性能. 讨论和分析了发射强度增强、电压特性改善的原因 Gd3+对Y3+的置换, 减少了因Eu3+对Y3+置换所引起的晶格的畸变、缺陷, 使Eu3+离子晶场环境得到改善, 从而减弱了无辐射过程及因晶格畸变所造成的能量损失;Sm3+的发射与Eu3+的吸收(激发)的部分重叠, 且Eu3+激发光谱中包含有Sm3+激发跃迁谱线, 导致了Sm3+→Eu3+共振能量传递可能性, 有效地实现Sm3+对Eu3+的敏化效应. 相似文献
4.
采用甘氨酸-硝酸盐燃烧法制备了Sr2CeO4和Sr2CeO4:Nd3+发光纳米粒子。样品的结构及性质采用XRD,TEM,荧光光谱及荧光衰减曲线等进行表征。在1200℃煅烧1h能够得到均匀的类球形Sr2CeO4:Nd3+纳米粒子,其粒径大小为20~40nm,并具有良好的分散性和高效的近红外发光特性。Nd3+合适掺杂浓度为0.15%(摩尔分数)。对Sr2CeO4:Nd3+近红外发光的机制分析表明:通过基质Sr2CeO4吸收紫外光,基团CeO4发生了电荷转移达到激发态,并将激发态能量传递给了Nd3+,从而使Sr2CeO4:Nd3+产生了特征的近红外发射。 相似文献
5.
Ln(Ln=Y/Gd)VO4:Er3+/Nd3+的制备及发光性能 总被引:2,自引:0,他引:2
采用高温固相法制备了Ln(Ln=Y/Gd)VO4掺Er^3+或Nd^3+的近红外发光材料。通过X射线粉末衍射(XRD)和光致发光(PL)对样品进行了表征。结果表明:所得产品结晶良好,属于四方晶系,锆石结构。研究了Er^3+,Nd^3+的含量、煅烧时间、煅烧温度等对材料近红外发光性质的影响。在Ln(Ln=Y/Gd)VO4:Er^3+/Nd^3+中,存在明显的从VO4^3-向Er^3+/Nd^3+的能量传递。两种不同的LnVO4(Ln=Y/Gd)基质对发光性质也有一定的影响。小浓度Bi^3+的掺人可以明显提高YVO4:Er^3+/Nd^3+的近红外发光强度。 相似文献
6.
采用溶胶-凝胶(Sol-gel)法制备了Li+共掺杂的Er3+-Yb3+∶TiO2粉末。976 nm激光激发下在波长350~1700 nm范围内观察到了紫外、蓝色、绿色和红色上转换发光和红外下转换发光。随着Li+共掺杂浓度由0增大到20mol%,Er3+-Yb3+∶TiO2的紫外、可见和红外发光强度同步增强。低Li+共掺杂浓度引起的Li+固溶以及高Li+共掺杂浓度引起的相变过程相继破坏了Er3+的晶体场对称性,导致紫外、可见和红外发光显著增强。结果表明共掺杂Li+是一种提高Er3+掺杂材料发光性能的有效方法。 相似文献
7.
LaF3:Eu3+纳米粒子的水热法制备及发光性质研究 总被引:6,自引:1,他引:6
用水热法制备了LaF3及Eu^3+掺杂的LaF3纳米粒子, 通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)和荧光光谱(FS)对样品进行了表征. 结果表明: 所得的纳米粒子粒度均匀、结晶完好, 呈规则的六边形形状;研究了反应温度和时间对LaF3纳米粒子形成的影响, 初步探讨了纳米粒子的生长机制. 研究了掺杂Eu^3+后的发光性质, 发现纳米粒子经高温煅烧后, 荧光强度有明显下降, 适宜的煅烧条件为600 ℃/6 h, Eu^3+的掺杂量在5%(摩尔分数)时, 纳米粒子的荧光强度最强, 更高的掺杂浓度将导致荧光猝灭. 相似文献
8.
利用高温固相法合成了一系列Ce3+掺杂的Sr-2xCexNax(BO3)3F (x=0.01,0.03,0.05,0.10,0.15,0.20,0.25,0.30,0.35)荧光粉.用XRD表征了荧光粉的相纯度.测定了材料在真空紫外-紫外(VUV-UV)范围的激发光谱和VUV-UV光激发下的发射光谱.研究结果显示:Sr5 (BO3)3F的基质吸收峰位置大约在150 ~ 190 nm范围,与Xe基稀有气体混合物等离子体发射波长吻合,适于用作PDP和无汞荧光灯用荧光粉的基质材料.从VUV-UV激发和发射光谱来分析,Ce3+在Sr5( BO3)3F中是占据了Sr(1)和Sr(2)格位,当Ce3+的掺杂浓度较低时,进入Sr(2)格位Ce3+的发光(~390 nm)较强,随着Ce3+的掺杂浓度增加,较低能量Sr(1)格位上Ce3+的发射(~450 nm)增强,因而在同一波长激发下,发射光谱随着掺杂浓度增加发生明显的红移现象,荧光体的发光颜色由蓝紫光(390 nm)向蓝绿光(453 nm)变化. 相似文献
9.
采用尿素沉淀法制备一系列Bi3+/La3+共掺Lu2O3和Bi3+/Lu3+共掺La2O3微米晶。在掺杂Bi3+离子的Lu2O3微米晶中,C2位点的Bi3+离子可以将吸收的能量转移给S6位点的Bi3+离子。同时,在Lu2O3:1%Bi3+,0~5%(摩尔分数,下同)La3+微米晶中,372和337 nm(C2和S6位点的Bi3+离子)紫外光的激发下,Bi3+离子的发射峰强度随着La3+离子掺杂浓度的增加而增加,掺杂5%La3+时与不掺杂La 相似文献
10.
11.
采用4,4,4-三氟-1-苯基-1,3-丁二酮(TPB)为第一配体,4,7-二苯基-1,10-菲咯啉(Bath)为第二配体,分别制备了配合物Er(TPB)3Bath和Yb(TPB)3Bath,以及它们的混合配合物ErxYb1-x(TPB)3Bath(x=0.218,0.799,0.896,0.987),并对所制得配合物的发光性能进行了系统研究。研究结果表明,所有配合物均能发射所含稀土离子的近红外特征光,并且可以通过调节混合配合物中的nEr/nYb来调控Yb3+/Er3+之间的能量传递,进而提高Er3+离子在1530 nm处的发光。 相似文献
12.
采用4,4,4-三氟-1-苯基-1,3-丁二酮(TPB)为第一配体,4,7-二苯基-1,10-菲咯啉(Bath)为第二配体,分别制备了配合物 Er(TPB)3Bath和Yb(TPB)3Bath,以及它们的混合配合物ErxYb1-x(TPB)3Bath(x=0.218,0.799,0.896,0.987),并对所制得配合物的发光性能进行了系统研究。研究结果表明,所有配合物均能发射所含稀土离子的近红外特征光,并且可以通过调节混合配合物中的 nEr/nYb来调控Yb3+/Er3+之间的能量传递,进而提高Er3+离子在1530 nm处的发光。 相似文献
13.
14.
采用乙二醇辅助共沉淀法制备了小尺寸Cr,In共掺杂MgGa2O4(MGO∶Cr, In)近红外长余辉发光纳米粒子(Persistent luminescence nanoparticles, PLNPs), 并考察了Cr, In共掺杂及煅烧温度对MGO晶体结构、 余辉发光性质和尺寸的影响. 结果表明, 最优Cr, In共掺杂浓度分别为0.3%和0.02%, MGO∶Cr, In晶体属于Fd3m空间群, Cr, In共掺杂对纳米颗粒的结构无影响, 平均粒径为(8.61±2.23) nm, 分散性良好, 最佳煅烧温度为700 ℃. 并且, In掺杂可有效延长其余辉发光寿命, 平均发光寿命(τav)从49.33 s增大至52.89 s; 荧光量子产率增高至44.9%; 活化能Ea为(0.36±0.04) eV, 具有良好的热稳定性; 陷阱深度为0.696 eV. 此外, 该PLNPs分别在260 nm、410 nm和600 nm处有激发峰, 表明UV光、 蓝绿光以及红光皆可实现对其的激发, 发射波长皆位于705 nm处, 属于Cr3+的2E(2G)→4A2(4F)跃迁. 该PLNPs在红色LED灯、 光学储器件以及生物医学等领域具有巨大潜在应用价值. 相似文献
15.
稀土掺杂的(K, Sr)Cl·SiO2复合凝胶的荧光性能 总被引:1,自引:0,他引:1
采用sol gel法制备了单掺铕及共掺铕、铈的(K,Sr)Cl·SiO2复合凝胶,研究了复合凝胶的荧光性能。根据荧光测试结果,复合凝胶中,Eu3+在没有还原剂的作用下,可以与基质作用形成还原态的Eu2+,复合凝胶表现出相应的Eu2+荧光性能;研究认为,Ce3+,Eu3+共掺杂时,复合凝胶激发光谱与发射光谱峰位基本不变,但强度有所不同。330nm处的激发光谱明显增强,且发射光谱随Ce3+的掺杂量增加而增强。当Ce3+掺杂浓度为3.0%(原子分数)时,复合凝胶具有最大的荧光发射强度,表明Ce3+具有很好的敏化作用。在Ce3+,Eu3+共掺杂复合凝胶体系中,复合凝胶荧光强度增大的原因既可能是电子转移过程,也可能是Ce3+→Eu2+的能量传递过程所致。 相似文献