首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This current study aimed to enhance the thermal conductivity of thin film composites without compromising other polymer qualities. The effect of adding high thermal conductivity nanoparticles on the thermal properties and moisture absorption of thin film epoxy composites was investigated. Three types of fillers in nanosize with high thermal conductivity properties, boron nitride (BN), synthetic diamond (SD), and silicon nitride (Si3N4) were studied. SN was later used as an abbreviation for Si3N4. The contents of fillers varied between 0 and 2 vol.%. An epoxy nanocomposite solution filled with high thermal conductivity fillers was spun at 1500–2000 rpm to produce thin film 40–60 µm thick. The effects of the fillers on thermal properties and moisture absorption were studied. The addition of 2 vol.% SD produced the largest improvement with 78% increment in thermal conductivity compared with the unfilled epoxy. SD‐filled epoxy thin film also showed good thermal stability with the lowest coefficients of thermal expansion, 19 and 124 ppm, before and after Tg, respectively, which are much lower compared with SN‐filled and BN‐filled epoxy thin film composites. However the SD‐filled epoxy film has its drawback as it absorbs more moisture compared with BN‐filled and SN‐filled epoxy film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Electrical and optical properties of the ZnO film prepared by sol-gel dip coating were investigated and ZnO film was deposited onto p-type silicon to obtain Ag/ZnO/p-Si heterojunction diode. Two dimensional atomic force microscopy images indicate that the ZnO film is formed from the fibers consisted from nanoparticles with grain size of 250-350 nm. The electrical conductivity mechanism of the ZnO film was varied from extrinsic to intrinsic conductivity. The calculated optical band gap of the ZnO film was found to be 3.22 eV. The Ag/ZnO/p-Si diode exhibit a non-linear behavior with ideality factor of n = 4.17 and barrier height of ?B = 0.79 eV. The electrical properties of the Ag/ZnO/p-Si diode were investigated by current-voltage, capacitance-voltage-frequency and conductance-voltage-frequency measurements.  相似文献   

3.
Polystyrene film was treated with 0.27 mol % ozone in oxygen at room temperature. Changes in the surface were monitored by ESCA. Reaction occurred uniformly in at least the outermost 60 Å of the film. Reaction was rapid, giving a surface composition that corresponded to C1.8O after about 8 h, with no apparent yellowing or embrittlement of the polymer. Ether, ketone, and carboxyl groups were formed at uniform, but not equal, rates in the outer 60 Å of the polymer. With short reaction times the less highly oxidized groups were the main oxidation product, but after about 4 h the highly oxidized groups predominated. The aromatic rings underwent reaction as indicated by the rapid disappearance of the C1s shake-up satellites on ozonation.  相似文献   

4.
For the purpose of glucose sensing, enzyme electrodes were fabricated via covalent immobilization of glucose oxidase on the films of conducting polymer. The films were prepared electrochemically by the copolymerization of 3-methylthiophene and thiophene-3-acetic acid. The properties of the films were investigated by taking into account the polymerization conditions (the kind of supporting electrodes, the current, the amount of passed charge, and the monomer concentration) and the dedoping treatment. The glucose sensing performance of the enzyme electrode was found to be affected markedly by the following three factors of the conducting polymer film: surface morphology, conductivity and cohesion with support electrodes. It was suggested that the ideal conducting polymer used for the enzyme electrode should be a thin film having high conductivity and ordered nanostructure.  相似文献   

5.
Preparation of new carbazole-containing polymer, poly[9-hexadecyl-3-phenyl-6-(4-vinylphenyl)-9H-carbazole], is reported. The optical properties of the product have been studied in comparison with those of the starting compounds. Electrochemical properties of the polymer solution and its thin film have been investigated. The polymer film images were obtained by atomic force and scanning tunneling microscopy. Thermogravimetric analysis has shown high thermal stability of the obtained polymer.  相似文献   

6.
Abstract

Methyl phosphonic dichloride (MPDC) and dimethyl methyl phosphonate (DMMP) are two important organophosphorus compounds used in the preparation of many toxic organophosphorus compounds such as nerve agents. This paper deals with the application of polyaniline coated on a glass slide surface as a sensor for the detection of some of the stimulant nerve agents such as MPDC and DMMP. The sensing behavior of polyaniline films toward MPDC and DMMP vapors via electrical conductivity changes of the polymer film using the standard four-point probe technique was investigated. The effects of the chemical concentration and the polymer thickness on the conductivity and conductivity stability of the polymer were also studied. The vapors of nerve agent stimulants affect the PANi film by the p-doping mechanism and lead to an increase in the conductivity of the polymer. The response times of the PANi film to MPDC and DMMP vapors are very fast, and the conductivity of the polymer increases with the increase in the concentration of the samples.  相似文献   

7.
A new regularly segmented conjugated polymer with methoxy-substituted p-terphenylene units tethered by their meta positions along the polymer main chain was synthesised using the Suzuki cross-coupling reaction. The small size of the connector and lack of long lateral chains lead to a high density of rigid electrooptically active moieties in the structure. However, this molecular architecture produces a very soluble and amorphous polymer with relatively high Tg. The optical properties of samples with different degrees of polymerisation were investigated using UV-visible absorption, steady state and time-resolved photoluminescence emission spectroscopies. Their absorption and emission properties are rather insensible to Mn after reaching a modest DP, to the aggregation state, either solution or neat film, and to annealing. The contorted polymer chain forms a very stable morphology and substantially hinders interactions between chromophores, thus diminishing the formation of aggregated species that are commonly observed in other electrooptically active polymers.  相似文献   

8.
A dipyrromethane functionalized monomer; 5-(4-tert-butylphenyl)dipyrromethane (BPDP) was synthesized. The structure of the monomer was characterized by nuclear magnetic resonance (1H NMR and 13C NMR) and Fourier transform infrared (FTIR) spectroscopies. Electrochemical polymerization of BPDP was performed in acetonitrile (AN)/LiClO4. The resulting conducting polymer was characterized by FTIR spectroscopy and electrical conductivity measurements. Spectroelectrochemical behavior and switching ability of P(BPDP) film were investigated by UV-Vis spectroscopy. P(BPDP) revealed color changes between yellow and blue in the reduced and oxidized states, respectively. In order to investigate electrochromic properties and stability of the P(BPDP) in electrochromic device (ECDs) application, dual type polymer ECD based on P(BPDP) and poly(ethylene dioxythiophene) (PEDOT) were constructed. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-Vis spectroscopy and cyclic voltammetry.  相似文献   

9.
Poly(siloxane‐urethane‐urea) elastomers containing both polysiloxane and polyethylene oxide (PEO) segments in the polymer chain were obtained by moisture‐curing of NCO‐terminated poly(siloxane‐urethane) prepolymers synthesized from isophorone diisocyanate and mixtures of polyoxyethylene diols and polysiloxane diols with various molecular weights. Mechanical properties of the moisture‐cured films and their swelling ability in solvent mixtures commonly used in lithium batteries were investigated, and it was found that they were greatly influenced by PEO content in the polymer. PEO content in the polymer was also found to affect very much the electric conductivity of the films after immersion in lithium salt solution in ethylene carbonate–dimethyl carbonate solvent mixture. At high contents of PEO in the polymer chain specific conductivities of the films in a range of 10?3, Scm?1 could be achieved at room temperature. Based on the results of Scanning Electron Microscopy with X‐ray Analysis (SEM/EDS) investigations and wide‐angle X‐ray scattering and small‐angle X‐ray scattering studies, it could be anticipated that the reason for good conductivity of the films might be their specific supramolecular structure that potentially facilitated lithium ion mobility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Electrical conductivity, optical, thermoelectric, and dielectrical properties of the poly(1,12-bis(carbazolyl) dodecane) film have been investigated. The activation energy for electrical conductivity and room-temperature electrical conductivity (at 25 degrees C) values were found to be 0.25 eV and 2.65 x 10-6 S/cm, respectively. The thermoelectric power results suggest that the conductivity is due to large polarons (i.e., the carriers in polymer move by hopping in the localized states at band gap edges). Electrical conductivity and thermoelectric power results confirm that the polymer is a p-type organic semiconductor. Optical absorption results suggest that the direct allowed transitions are dominant in the fundamental absorption edge in the polymer with optical band gap value of 2.72 eV. The refractive index dispersion of the polymer obeys the single oscillator model with oscillator energy (Eo = 3.06 eV) and dispersion energy (Ed = 17.82 eV) values. Alternating current conductivity results suggest that the hopping conductivity is dominant in the polymer. The dielectrical properties exhibit a non-Debye relaxation.  相似文献   

11.
The chemical co-polymerization of aniline with o-anthranilic acid (AA) to form copolymer films has been made in aqueous hydrochloric acid medium. The copolymer films were monitored by using the quartz crystal microbalance (QCM) technique. The effect of AA and its concentrations on the film formation was investigated. The results were justified by measuring the UV-Vis absorption spectra for the in situ copolymer films grown onto glass slides immersed into the polymerization media and the in situ UV-Vis absorption spectra for the copolymer in the bulk during the co-polymerization. The conductivity for the copolymer films and powder pellets at different molar ratios of aniline/AA were measured. Also, the IR spectra, X-ray diffraction and the thermal gravimetric analysis for the copolymer powder formed in the bulk in the absence and presence of AA were measured and discussed. It is found that the presence of AA affects the yield, induction period, depletion time and growth rate of the film formation. It also affects the crystallinity, and conductivity as well as the solubility of the polymer. Finally, the dopant weight fraction (w) associated with the copolymer was determined. It is almost half the value determined for the polymer in absence of AA.  相似文献   

12.
Plasticized polymer electrolytes composed of chitosan as the host polymer, oleic acid (OA) as the plasticizer and lithium acetate (LiOAc) as the doping salt were prepared by the solution cast technique. These complexes with different amounts of salts and plasticizers were investigated as possible ionic conducting polymers. The highest ionic conductivity of the plasticized chitosan-LiOAc was ∼10−5 S cm−1 for the film containing 40.0 wt.% LiOAc and 10.0 wt.% of OA. Conductivity for the plasticized LiOAc-doped chitosan polymer was also studied as a function of temperature between 300 and 363 K. The plot of ln(σT) versus 103/T for each sample obeys Arrhenius rule indicating the conductivity to be thermally assisted. XRD and FTIR spectroscopy techniques have been used for the structural studies.  相似文献   

13.
The stability of electrical and mechanical properties of two kinds of polymer composites ‐ polyethylene/carbon black and polyethylene/carbon black modified by polypyrrole ‐ was investigated during slow cycle heating and cooling. Conductivity in composites was measured in heating/cooling cycles in the temperature range from 16°C to 125°C. It was found that the thermal treatment resulted in the conductivity changes and the mechanical properties of treated composites have also been influenced. The effect was explained by increased crystallinity in the polymer matrix of thermally treated composites.  相似文献   

14.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

15.
A novel conductive dense membrane composed of polyaniline (PANI) and polysulfone (PSU) was prepared. To improve the solubility of PANI in N-methyl pyrrolidone (NMP) and consequently increase the conductivity of the eventual film, a tertiary amine (1,3-dimethyl-2-imidazolidinone, DMI) was added to the solvent as a co-solvent. Different PANI solution concentrations in NMP/DMI were used to make blend films via solution blending with PSU solution in NMP in different ratio’s of PANI/PSU. The effect of the PSU fraction on the properties of the membrane has been investigated. The electrical conductivity, doping degree, crystallinity, miscibility of the polymers and shape stability were investigated. It was observed that an increase in the PSU fraction causes a decrease in the conductivity as well as less film deformation after doping. The conductivity and shape stability of the blend film were optimized by a change in PANI concentration in the casting solution and a change in the PSU fraction. The best conductivity was achieved using 3% PANI solution in NMP/DMI and the minimum percentage of PSU, allowing good shape stability after doping, was found to be 40%.  相似文献   

16.
Novel electrically conducting and biocompatible composite hydrogel materials comprising of poly (aniline) (PANI) nanoparticles dispersed in a poly (vinyl alcohol) (PVA) – g–poly (acrylic acid) (PAA) matrix were prepared by in situ polymerization of aniline. The prepared ionic hydrogels were evaluated for their water uptake capacity in distilled water. While structural insights into the synthesized polymer was sought by Fourier Transform Infrared (FTIR) spectroscopy and X–Ray Diffraction (XRD) techniques, morphology and dimension of PANI particles embedded into the colored optically semi–transparent polymer films were evaluated by Scanning Electron Microscopy (SEM) analysis and Transmittance Electron Microscopy (TEM) while thermal behavior of composite hydrogel was investigated by Differential Scanning Calorimetry (DSC). Electrical conductivity of composite hydrogels containing different PANI percentage was determined by LCR. Considering the potential of electrically conductive nanocomposites materials in biomedical applications the in vitro blood compatibility of nanocomposites was investigated by employing several in vitro tests.  相似文献   

17.
1,4-Bis(2-(3,4-ethylenedioxy)thienyl)benzene, prepared by Stille cross-coupling reaction was successfully electrochemically polymerized to give polymer 1,4-bis(2-(3,4-ethylenedioxy)thienyl)benzene (PEBE). Characterizations of the resulting polymer PEBE were performed by cyclic voltammetry (CV), UV–vis, Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the spectroelectrochemical and electrochromic properties of the polymer film were investigated. The resulting polymer film has distinct electrochromic properties and shows three different colors (deep red, gray, and light blue) under various potentials. At the dedoped state of the polymer, the ππ* transition absorption peak is located at 510?nm and the optical band gap (E g) was calculated as 1.92?eV. The PEBE film shows a maximum optical contrast (ΔT%) of 31.0?% at 500?nm with a response time of 0.85?s. The coloration efficiency of PEBE film was calculated to be 182.2?cm2C?1. An electrochromic device (ECD) based on PEBE and poly(3,4-ethylenedioxythiophene) was also constructed and characterized. The response time was measured as 0.4?s, and the coloration efficiency of the device was calculated to be 225.4?cm2C?1. Furthermore, this ECD exhibited satisfactory optical memories and redox stability.  相似文献   

18.
PVA-CMC-KOH-H2O碱性聚合物电解质研究   总被引:8,自引:0,他引:8  
袁安保  赵俊 《电化学》2006,12(1):40-45
由聚乙烯醇(PVA)与羧甲基纤维素钠(CMC)制备PVA-CMC-KOH-H2O碱性聚合物电解质膜,应用交流阻抗、循环伏安、差热分析和红外光谱等实验方法表征、研究其性能.结果表明,该碱性聚合物电解质的室温电导率可达到10-2S.cm-1数量级,在不锈钢惰性电极上的电化学稳定窗口约为1.6 V.另外,还研究了聚合物电解质膜中KOH、H2O和CMC对体系电导率的影响以及PVA-CMC-KOH-H2O碱性聚合物电解质在N i/MH电池中的初步应用.初步结果表明,由PVA-CMC-KOH-H2O聚合物电解质组装的N i/MH电池,其低倍率放电性能较好.  相似文献   

19.
The chemical oxidation of aniline to form polyaniline (PANI) films was made in the presence of N-phenyl-1,4-phenylenediamine (PPDA) in aqueous hydrochloric acid medium. The PANI films were monitored by using the quartz crystal microbalance (QCM) technique. The effect of PPDA and its concentration on the film formation was investigated. It was found that PPDA decreases the yield of the PANI film, the induction period and the depletion time of the polymerization. However, the growth rate of the film formation was found to increase by increasing PPDA concentration. These results were justified by measuring the UV-VIS absorption spectra for the in situ PANI films and the in situ UV-VIS absorption spectra for the polymer in the bulk during the polymerization. The conductivity for the PANI films at different concentrations of PPDA was measured. Also, the IR spectra, X-ray and the thermal gravimetric analysis for the PANI powder formed in the bulk in the presence of PPDA were measured and discussed.  相似文献   

20.
An ultrasensitive and highly selective electrochemical sensor for the determination of p-nitrophenol (p-NP) was developed based on electrochemically treated nano polypyrrole/sodium dodecyl sulphate film (ENPPy/SDS film) modified glassy carbon electrode. The nano polypyrrole/sodium dodecyl sulphate film (NPPy/SDS film) was prepared and treated electrochemically in phosphate buffer solution. The surface morphology and elemental analysis of treated and untreated NPPy/SDS film were characterized by FESEM and EDX analysis, respectively. Wettability of polymer films were analysed by contact angle test. The hydrophilic nature of the polymer film decreased after electrochemical treatment. Effect of the pH of electrolyte and thickness of the ENPPy/SDS film on determination of p-NP was optimised by cyclic voltammetry. Under the optimised conditions, the p-NP was determined from the oxidation peak of p-hydroxyaminophenol which was formed from the reduction of p-NP in the reduction segment of cyclic voltammetry. A very good linear detection range (from 0.1 nM to 100 μM) and the best LOD (0.1 nM) were obtained for p-NP with very good selectivity. This detection limit is below to the allowed limit in drinking water, 0.43 μM, proposed by the U.S. Environmental Protection Agency (EPA) and earlier reports. Moreover, ENPPy/SDS film based sensor exhibits high sensitivity (4.4546 μA μM−1) to p-NP. Experimental results show that it is a fast and simple sensor for p-NP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号