首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the degradation trends of selected polyhydroxyalkanoate (PHA) films in a tropical mangrove environment. The biodegradability of homopolymer poly(3-hydroxybutyrate) [P(3HB)] and its co-polymers, poly(3-hydroxybutyrate-co-5 mol% 3-hydroxyvalerate) [P(3HB-co-5 mol% 3HV)] and poly(3-hydroxybutyrate-co-5 mol% 3-hydroxyhexanoate) [P(3HB-co-5 mol% 3HHx)], was investigated along with P(3HB) films containing 38 wt% titanium dioxide (TiO2) [P(3HB)-38 wt% TiO2]. The degradation of these formulations was monitored for 8 weeks at three different zones in an intermediate mangrove compartment along Sungai Pinang, adjacent to a famous fishing village on south of Penang Island. The degradation rate was observed both on the surface and in the sediment and was expressed in percentage of weight loss. The microbial enumeration done using sediment from the different zones indicated similar colony-forming unit (CFU) counts even though differences were noticed in the degradation profile of the various films in the respective zones. The results obtained revealed that co-polymers disintegrated at similar or higher rate than the homopolymer, P(3HB). However, the incorporation of TiO2 into PHB films caused the degradation rate of P(3HB)-38 wt% TiO2 composite film to be far slower than all the other PHA films. The overall rate of degradation of all PHA films placed on the sediment surface was slower than those buried in the sediment. Microscopic analyses showed that the surface morphology of P(3HB-co-5 mol% 3HHx) was more porous compared to P(3HB) and P(3HB-co-5 mol% 3HV) films, which may be an important factor for its rapid degradation.  相似文献   

2.
Poly(methyl methacrylate-co-styrene)-block-polysulfide-block-poly(methyl methacrylate-co-styrene) triblock copolymers were synthesized for the first time by the free radical copolymerization of methyl methacrylate (MMA) and styrene (St) in the presence of a thiocol oligomer as a chain transfer agent, followed by chemical oxidation of the remaining SH-end groups. The apparent chain transfer constant of the thiocol SH groups in the copolymerization reaction was estimated from the rate of consumption of the thiol groups versus the overall rate of consumption of the monomers (CT = 1.28). Based on this value, the chain transfer constant of the thiocol SH groups in St polymerization was calculated . The triblock copolymers synthesized were characterized by SEC and 1H NMR measurements.  相似文献   

3.
In this work, the syntheses of poly(butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate) triblock copolymer and poly(methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate) pentablock copolymers using copper mediated living radical polymerisation are reported. Living radical polymerisations were performed using the system CuIBr/N-(n-propyl)-2-pyridylmethanimine as catalyst in conjunction with a difunctional initiator, the 1,4-(2-bromo-2-methylpropionoto)benzene (1). The syntheses of poly(MMA), poly(BMA-b-MMA-b-BMA) and poly(MMA-b-BMA-b-MMA-b-BMA-b-MMA) are described in detail using 1H NMR spectroscopy and size exclusion chromatography. The living behaviour and the blocking efficiency of these polymerisations were investigated in each case. Difunctional initiator, 1, based on hydroquinone was synthesised and fully characterised and subsequently used to give difunctional poly(methyl methacrylate) macroinitiators with molecular weights up to 54,000 g mol−1 and polydispersity between 1.07 and 1.32; molecular weights were close to the theoretical values. The difunctional macroinitiators were used to reinitiate butyl methacrylate to give triblock copolymers of Mn between 17,500 and 45,700 g mol−1. Polydispersities remained narrow below 25,000 g mol−1 but broadened at higher masses. The difunctional triblock macroinitiators were subsequently used to reinitiate methyl methacrylate to give ABABA pentablock copolymers with Mn up to 37,000 g mol−1 with polydispersity=1.13. Under certain conditions radical-radical reaction led to a broadening of polydispersity index.  相似文献   

4.
Optically active poly[triphenylmethyl methacrylate-co-phenyl[bis(2-pyridyl)]methyl methacrylate] (poly[TrMA-co-PB2PyMA], poly[diphenyl(2-pyridyl)methyl methacrylate-co-phenyl[bis(2-pyridyl)]methyl methacrylate] (poly[D2PyMA-co-PB2PyMA]), and poly[triphenylmethyl methacrylate-co-diphenyl(2-pyridyl)-methyl methacrylate] (poly[TrMA-co-D2PyMA]) were prepared by helix-sense-selective copolymerization with complexes of organolithium with (−)-sparteine [(−)Sp],(S, S)-(+)- and (R, R)-(−)-2,3-dimethoxy-1,4-bis(dimethylamino)butane [(+)- and (−)DDB], and (S)-(+)-2-(1-pyrrolidinylmethyl)pyridine [(+)PMP] as anionic initiators in toluene at low temperature. The copolymers obtained with (−)Sp and (+)DDB or (−)DDB complexes of organolithium showed low optical activity, but to [(+)PMP] complex with N,N′-diphenyleneamine monolithium amide [(+)PMP–DPEDA–Li)] was effective in synthesizing copolymers of high optical rotation ([α] about +320 to + 370°) which were comparable to those of corresponding homopolymers with one-handed helical structure. The optical rotations of poly[TrMA-co-PB2PyMA] and poly[TrMA-co-D2PyMA] were much more stable than that of poly(D2PyMA) or poly(PB2PyMA) in a solution of CHCl3–2,2,2-trifluoroethanol (10 : 1, v/v) at 25°C, but optical rotation of poly[D2PyMA-co-PB2PyMA] slowly decreased with time in the same conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2127–2133, 1998  相似文献   

5.
Summary: A novel combinatorial, high-throughput experimentation (HTE) setup has been developed, which allows for rapid mapping of the phase behavior of blends of homopolymers and block copolymers. The principle is based on the preparation of composition (ϕ)-temperature (T) gradient films. Linear ϕ gradients were obtained over a large composition range, as shown by FTIR microscopy. The applicability of this combinatorial approach was demonstrated by studying the phase behavior of a poly(styrene-co-acrylonitrile) (SAN)/poly(methyl methacrylate-co-ethyl acrylate) (PMMA-EA) blend with varying EA content and a poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) triblock copolymer.  相似文献   

6.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

7.
A novel photocatalytically degradable TiO2/poly[acrylamide-co-(acrylic acid)] composite hydrogel (TiO2/poly[AAm-co-AAc]) was synthesized by polymerization in an aqueous solution with N,N’-methylenebisacrylamide as the crosslinker and ammonium persulphate and TEMED as the initiator pair. The combined and separate effects of photodegradation and adsorption processes for dye removal were evaluated using methylene blue (MB) as the model dye for a photodegradation target, and compared with those of the neat poly[AAm-co-AAc], and a commercially available TiO2 photocatalyst (Degussa P-25). Without photodegradation (i.e. in the dark), the TiO2/poly[AAm-co-AAc] composite adsorbed up to 85% of the MB from a 5 mg L−1 MB solution in 15 min compared to only 10% for the pristine TiO2. The reproducibility in photodegradation of the reused poly[AAm-co-AAc] composite was also investigated, where poly[AAm-co-AAc] was found to be photocatalytically degraded under UV irradiation. Therefore, the TiO2/poly[AAm-co-AAc] composite hydrogel is a good dye adsorber with self-photodegradability and it also can easily be separated from the reaction by simple filtration. With these properties, the TiO2/poly[AAm-co-AAc] hydrogel can be called a green polymer for use in the photodegradation-adsorption process for the abatement of various pollutants.  相似文献   

8.
Cationic graft copolymerizations of bicyclic acetals, 1,6-anhydro-2,3,4-tri-O-benzyl-β-D -glucopyranose (LGTBE) and 1,6-anhydro-2,3,4-tri-O-methyl-β-D -glucopyranose (LGTME), were investigated with macromolecular carbenium ions formed from polymers that contain reactive halogens. Macromolecular complex catalysts formed from chlorosulfonated polyethylene or poly(isoprene-co-chloromethylstyrene) by the action of phosphorus pentafluoride yielded graft copolymers with low proportions (0.6–16%) of poly(LGTBE) or poly(LGTBE-co-epichlorohydrin) branchings. It was found that macromolecular complex catalysts formed from poly(styrene-co-fluoromethylstyrene) or poly(methyl methacrylate-co-fluoromethylstyrene) by the action of boron trifluoride etherate give graft copolymers with high proportions (up to 80%) of poly(LGTBE) or poly(LGTME) branchings. In addition, the model reactions for the graft copolymerization of LGTBE were examined with organic halide-PF5, organic halide-AgPF6, and organic fluoride-BF3·OEt2 catalytic systems, of which the last two indicate that the polymerization is effected by a carbenium ion mechanism.  相似文献   

9.
Using composite surfactant templates, polyoxyethylene (20) oleyl ether (Brij98) and cetyl trimethyl ammonium bromide (CTAB), as structure-directing agents, N and La co-doped mesoporous TiO2 complex photocatalysts were synthesized successfully. The micromorphology of co-doped mesoporous TiO2 samples was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR), energy-dispersive X-ray spectrometer (EDS) and N2 adsorption-desorption measurements. The results indicated that the complex photocatalyst prepared with a molar ratio of Brij98:CTAB=1:1 showed a uniform pore size of ca. 7 nm and a high specific surface area (SBET) of 279.0 m2 g−1, and exhibited the highest photocatalytic activity for degradation of papermaking wastewater under ultra-violet light irradiation. The chemical oxygen demand (CODcr) percent degradation was about 73% in 12 h and chroma percent degradation was 100% in 8 h.  相似文献   

10.
The influence of TiO2 nanoparticles on the thermal degradation of poly(methyl methacrylate) (PMMA) was investigated by TGA. The studied materials were characterized by Py-GC-MS, TEM, SEM, TGA, DSC and TGA-MS. The PMMA-TiO2 nanocomposites were prepared by melt blending with different (5, 10, 15 and 20 wt% TiO2) loadings. According to TGA results and to the activation energy (determined by the model-free isoconversional method of Vyazovkin), the incorporation of 5 wt% of TiO2 nanoparticles into PMMA stabilizes it by more than 40 °C. However, for higher loading contents, a catalytic effect on the thermal decomposition was observed which increased with the oxide content. The results obtained by Py-GC-MS showed clearly that TiO2 increases the formation of methanol, methacrylic acid and propanoic acid methyl ester during the degradation of PMMA. This catalytic effect could be explained through the interaction of the methoxy group of the methacrylate function with the hydroxyl groups present at the surface of the oxide particles.  相似文献   

11.
Synthesis and properties of novel aliphatic poly(carbonate-ester)s   总被引:1,自引:0,他引:1  
The biodegradable poly(5-methyl-5-methoxycarbonyl-1,3-dioxan-2-one-co-d,l-lactide) [poly(MMTC-co-d,l-LA)] copolymers were synthesized by the ring-opening copolymerization. The results show that the yield and molecular weight of copolymers are significantly influenced by reaction conditions. The chemical structure of the resultant copolymers was characterized by FTIR, 1H NMR and 13C NMR methods. Their molecular weight was measured by gel permeation chromatography (GPC). Study of monomer coreactivity ratios indicates that d,l-LA reacts faster than MMTC in the copolymerization. The enzymatic degradation of the polymers with various compositions was studied at 37 °C in pH = 8.6 Tris-HCl buffer solution in the presence of proteinase K. Their mechanical properties were also preliminarily investigated.  相似文献   

12.
Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission. Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.  相似文献   

13.
 用超声脉冲回波法对甲基丙烯酸甲酯-甲基丙烯酸丁酯(MMA-BMA)、含交联剂的甲基丙烯酸甲酯-甲基丙烯酸(MMA-MAA)和苯乙烯-甲基丙烯酸(ST-MAA)等三类共聚物进行了超声衰减和声速实验研究.结果表明,随BMA含量的增加,MMA-BMA共聚物的超声衰减增大,而声速减小;交联剂的加入使共聚物MMA-MAA和ST-MAA的超声衰减明显增大.随着温度的升高,MMA-BMA的超声衰减单调缓慢增加,当温度上升到Tg时则急剧增大.Tg值随BMA的含量增加而降低.文章对上述结果给予了解释.  相似文献   

14.
In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate–MAA ratios were investigated to prepare a series of 30% alkyl methacrylate–MAA–EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.  相似文献   

15.
Well-defined poly(4-vinylpyridine) (P4VP) was synthesised by nitroxide-mediated radical polymerization using the BlocBuilder MAMA-SG1. The controlled character of the polymerization was confirmed by kinetic measurements and linear increase of the molar mass with monomer conversion. Poly(4-vinylpyridine) terminated with SG1 was then used as macroinitiator and chain extended to form poly(4-vinylpyridine-b-methyl methacrylate) and poly(4-vinylpyridine-b-(methyl methacrylate-co-styrene)) block copolymers. These block copolymers spontaneously organized into spherical inverse micelles in THF with critical micelle concentrations of 0.1 mg/mL for poly(4VP190-b-MMA91) and 0.01 mg/mL for poly(4VP190-b-(MMA57-co-S18)) and sizes of 70 and 130 nm (DLS), respectively. The inverse micelles were loaded with copper(II)acetate leading to a slight increase in micelle size. The uniform structure of the inverse micelles was confirmed by FeSEM images, while the presence of copper in the micelle core was established by energy-dispersive X-ray spectroscopy (EDX) and FTIR spectroscopy.  相似文献   

16.
用超声脉冲回波法对甲基丙烯酸甲酯-甲基丙烯酸丁酯(MMA-BMA)、含交联剂的甲基丙烯酸甲酯-甲基丙烯酸(MMA-MAA)和苯乙烯-甲基丙烯酸(ST-MAA)等三类共聚物进行了超声衰减和声速实验研究.结果表明,随BMA含量的增加,MMA-BMA共聚物的超声衰减增大,而声速减小;交联剂的加入使共聚物MMA-MAA和ST-MAA的超声衰减明显增大.随着温度的升高,MMA-BMA的超声衰减单调缓慢增加,当温度上升到T_g时则急剧增大.T_g值随BMA的含量增加而降低.文章对上述结果给予了解释.  相似文献   

17.
Nitrogen and cerium codoped TiO2 photocatalysts were prepared by a modified sol-gel process with doping precursors of cerium nitrate and urea, and characterized by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray photoelectron spectra (XPS) and ultraviolet-visible light diffuse reflectance spectra (UV-vis DRS). Results indicate that anatase TiO2 is the dominant crystalline type in as-prepared samples, and CeO2 crystallites appear as the doping ratio of Ce/Ti reaches to 3.0 at%. The TiO2 starts to transform from amorphous phase to anatase at 987.1 K during calcination, according to the TG-DSC curves. The XPS show that three major metal ions of Ce3+, Ce4+, Ti4+ and one minor metal ion of Ti3+ coexist on the surface. The codoped TiO2 exhibits significant absorption within the range of 400-500 nm compared to the non-doped and only nitrogen-doped TiO2. The enhanced photocatalytic activity of the codoped TiO2 is demonstrated through degradation of methyl orange under visible light irradiation.  相似文献   

18.
Poly(1-dodecene-co-pMS) copolymers were brominated by HBr/H2O2 system with high selectivity at the methyl groups of pMS units. It was found that longer reaction time, higher pMS content, and lower molecular weight of the copolymers were helpful for higher degree of bromination. Through a modified Williamson ether synthesis, poly(ethylene glycol) monomethyl ethers (PEG) were grafted onto the brominated copolymers, and the amphiphilic poly(1-dodecene-co-pMS)-graft-PEG copolymers which can be readily dissolved in n-octane were successfully synthesized. Due to their amphiphilic characteristics, they can self-assemble spontaneously into reverse micelles in n-octane. Their micellization behaviors were investigated by fluorescence probe technique, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The critical micelle concentrations of the three copolymers in n-octane were determined at about 1.26 × 10−4, 1.58 × 10−4, and 1.95 × 10−4 g ml−1 by fluorescence measurements. The morphologies of micelles were preliminarily explored by TEM and were found to be spheres.  相似文献   

19.
A series of AB and ABA block copolymers of pDEGMEMA-b-pCHMA and pCHMA-b-pDEGMEMA-b-pCHMA cyclohexyl methacrylate (CHMA) and di(ethylene glycol) methyl ether methacrylate (DEGMEMA) with Mn ranging between 18,000 and 50,000 g mol−1 and PDI = 1.09-1.32 were prepared via copper(I) mediated living radical polymerization with pyridylmethanimine ligands. Aggregation properties were investigated using a combination of 1H NMR, dynamic and static light scattering. For comparative purposes poly(CHMA) and poly(DEGMEMA) homopolymers were prepared. The CAC values estimated for the di- and triblock copolymers soluble in cyclohexane are lower than 0.005 g L−1 whereas the values found for block copolymers in methanol solutions are less than 0.070 g L−1. DLS analysis showed the presence of micellar aggregates with diameters ranging from 25 to 40 nm with particle polydispersity indexes between 0.003 and 0.183. The pCHMA-b-pDEGMEMA-b-pCHMA micelles solubilized the aqueous phase in petrol/gasoline. The block copolymer-based micelles incorporate water within their hydrophilic domains, potentially overcoming a number of practical problems such as the formation of biphasic mixtures in solvent blends due to undesired water accumulation.  相似文献   

20.
The photocatalytic activity of gold deposited on Degussa P25 titanium dioxide (Au-DP25) in the photodegradation of methyl orange (MO) was investigated. The as-prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) techniques. The obtained results show that the gold (Au0) deposited TiO2 exhibited visible light plasmon absorption band. The degradation experiment j reveals that the catalytic activity of Au-DP25 in the degradation of MO is higher than that of commercially available Degussa P25 TiO2 (DP25) samples. In addition, the photocatalytic ability of composite Au-DP25 was hardly decreased after a five-cycle for MO degradation. The kinetics of the MO degradation fitted well the Langmuir-Hinshelwood model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号