首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-infrared broadband luminescence from 1100 to 1600 nm was observed in Bi2O3-GeO2 binary glasses. The strongest emission can be observed with 30 mol % Bi2O3 when pumped at 808 nm. The lifetimes of all samples are longer than 200 μs. The glass network was studied by Raman spectra and Bi+ ions are proposed as the infrared luminescence centers in this glass system. Thermal treatment in air results in partly oxidation of Bi+ to Bi2+.  相似文献   

2.
Bi3+ and Eu3+ codoped cubic Gd2O3 nanocrystals were prepared by the Pechini sol-gel method. Their photoluminescent properties were investigated under ultraviolet light excitation. The introduction of Bi3+ ions broadened the excitation band of Eu3+ emission, of which a new strong band occurred ranging from 320 to 380 nm due to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. Upon 325 and 355 nm light excitation, the luminescent intensity of Eu3+ ions was remarkably improved by the incorporation of Bi3+ ions. But a significant quenching of Eu3+ emission was observed under 266 nm light excitation when Bi3+ was codoped. The possible energy transfer processes between Bi3+ and Eu3+ were discussed. The decay curves of Eu3+ emission under the excitation of 266 nm pulsed laser were measured and gave further evidence for our discussion.  相似文献   

3.
Luminescence of the Bi3+ single and dimer centers in UV and visible ranges is studied in YAG:Bi (0.13 and 0.27 at% of Bi, respectively) single crystalline films (SCFs), grown by liquid phase epitaxy from a Bi2O3 flux. The cathodoluminescence spectra, photoluminescence decays, and time-resolved spectra are measured under the excitation by accelerated electrons and synchrotron radiation with energies of 3.7 and 12 eV, respectively. The energy level structure of the Bi3+ single and dimer centers was determined. The UV luminescence of YAG:Bi SCF in the bands that peaked at 4.045 and 3.995 eV at 300 K is caused by radiative transitions of Bi3+ single and dimer centers, respectively. The excitation spectra of UV luminescence of Bi3+ single and dimer centers consist of two dominant bands, peaked at 4.7/4.315 and 5.7/6.15 eV, related to the 1S03P1 (A band) and 1S01P1 (C-band) transitions of Bi3+ ions, respectively. The excitation bands that peaked at 7.0 and 7.09 eV are ascribed to excitons bound with the Bi3+ single and dimer centers, respectively. The visible luminescence of YAG:Bi SCF presents superposition of several wide emission bands peaking within the 3.125-2.57 eV range and is ascribed to different types of excitons localized around the Bi3+ single and dimer centers. Apart from the above mentioned A and C bands the excitation spectra of visible luminescence contain wide bands at 5.25, 5.93, and 6.85 eV ascribed to the O2−→Bi3+ and Bi3+→Bi4+ + e charge transfer transition (CTT) in Bi3+ single and dimer centers. The observed significant differences in the decay kinetics of visible luminescence under excitation in A and C bands of Bi3+ ions, CTT bands, and in the exciton and interband transitions confirm the radiative decay of different types of excitons localized around Bi3+ ions in the single and dimer centers.  相似文献   

4.
A series of nanosized Bi2WO6 catalysts was synthesized using various starting materials, and they were characterized by X-ray diffractometry, transmission electron microscopy, and diffuse reflectance spectroscopy. Rhodamine-B (RhB) photodegradation in aqueous medium was employed as a probe reaction to test the photoactivity of the as-prepared samples. Dependence of the photocatalytic activities on different contents of the starting materials was examined under visible irradiation (λ > 400 nm). The sample prepared in the following conditions: reaction time 24 h, the pH of the solution 7, the Bi3+ amount in the start precipitates 5 mmol — exhibited the highest photochemical activity when the hydrothermal temperature was settled at 180°C. Published in Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 2, pp. 243–249, Martch–April, 2009.  相似文献   

5.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

6.
The phosphors, Bi3+- activated Gd2O3:Er3+, were prepared by sol-gel combustion method, and their photoluminescent properties were investigated under ultraviolet light excitation. The emission spectrum exhibited sharp peaks at about 520, 535, 545, 550 and 559 nm due to (2H11/2, 4S3/2)→4I15/2 transitions of Er3+ ions. The luminescent intensity was remarkably improved by the incorporation of Bi3+ ions under 340 nm light excitation, which suggested very efficient energy transfer from Bi3+ ions to Er3+ions. The introducing of Bi3+ ions broadened the excitation band of the phosphor, of which a new strong peak occurred ranging from 320 to 360 nm due to the 6s2→6s6p transition of Bi3+ ions. There is significant energy overlap between the emission band of Bi3+ ions and the excitation band of Er3+ ions. Under 340 nm light excitation, Bi3+ absorbed most of the energy and transferred it to Er3+. The energy transfer probability from Bi3+ to Er3+ is strongly dependent on the Bi3+ ion concentration. Also, the sensitization effectiveness was studied and discussed in this paper.  相似文献   

7.
Nanocrystalline Tm3+(5%)-doped BaTiO3 (BT-Tm) has been synthesized by the sol–gel method. The morphology, structure, and optical properties of powders and ceramics were characterized. The average grain size of the gel precursor annealed at 700 and 900 °C was 20 nm and 30 nm, respectively. These powders were single phase and crystallized with a cubic structure while the BT-Tm sintered ceramics were crystallized with the tetragonal BaTiO3 structure. The photoluminescence spectra showed typical transitions of Tm3+ ions and a structure consistent with the Tm3+ ions incorporation in the BaTiO3 crystalline lattice. Thermoluminescence peaks recorded at 300 °C (for annealed samples) or at 230 °C for the ceramic sample were assigned to the recombination of the Tm2+-electron traps located mainly at the surface of the nano-crystals or inside the microcrystals, respectively.  相似文献   

8.
We report the first observation of photoluminescence enhancement in Er3+ doped GeO2–Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of ≈200% in the intensity of the Er3+ transition 4S3/24I15/2 (545 nm) and of ≈100% for transitions 2H11/24I15/2 (525 nm), 4F9/24I15/2 (660 nm), and 4I5/24I13/2 (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.  相似文献   

9.
The photoluminescence (PL) emission and excitation spectra of undoped and doped with rare-earth (RE = Eu, Tb) ions K3Bi5(PO4)6 and K2Bi(PO4)(MoO4) crystals are studied in 3.7–14 eV region of the excitation photon energies at T = 8 and 300 K. The mechanisms of the host-related and RE-related luminescence in 3.7–7 eV region of the excitation photon energies are revealed in comparative analysis of the PL spectra of studied compounds. It is assumed that the excitation mechanisms of host luminescence of K3Bi5(PO4)6 and K2Bi(PO4) (MoO4) crystals below 4.8 eV are related to Bi3+ ions in oxygen surrounding. An efficient energy transfer from the Bi3+-related luminescence centers to the emitting RE centers exists in crystals with low concentration of the RE dopants (1%). The PL excitation spectra of K3Bi5(PO4)6 crystals with high concentration of Eu dopants are formed by O – Eu CT transitions.  相似文献   

10.
Bismuth ions doped Ba10(PO4)6Cl2 was synthesized by solid state reaction and its spectral properties were investigated. The results showed that the samples prepared in air only presented typical ultraviolet (UV) luminescence of Bi3+ at 370 nm, however broadband yellow–white and near infrared (NIR) emission could be observed in the samples prepared in reductive atmosphere, indicating those broadband emissions are related to the presence of low valent bismuth species. Correlating excitation and emission data with the charge of available lattice sites suggest that Bi3+ coexist with Bi+, and each locate on one of the two available Ba2+ lattice sites. We propose that broadband yellow–white and NIR emissions are ascribed to the related transitions of Bi+ ion.  相似文献   

11.
A record peak luminescence intensity of the 5 D 07 F 4 transition in Eu3+ ions and broadening of their UV excitation band are obtained by doping of Eu-containing alumina gel films with bismuth oxyfluoride and subsequent thermal treatment at T ≥ 700°C. The results obtained are explained by the formation of complex Eu—Bi centers with C 3V symmetry in the Al2O3 structure, efficient migration of excitations from EuAlO3 crystallites to these centers, and the sensitization of the luminescence of the rare-earth activator by Bi3+ ions. __________ Translated from Optika i Spektroskopiya, Vol. 98, No. 2, 2005, pp. 224–228. Original Russian Text Copyright ? 2005 by Malashkevich, Shevchenko, Bokshits, Kornienko, Pershukevich.  相似文献   

12.
Bi4(GeO4)3 glass materials have been characterized by X-ray excited luminescence, photoluminescence and cathodo-luminescence measurements. The materials were obtained by crystallization at different temperatures and their spectroscopic parameters were compared before and after crystallization. Thermoluminescence curves recorded after electron irradiation of BGO glass behave similarly to BGO crystals, showing several peaks between 408 K (135 °C) and 610 K (337 °C). The differences between the Bi4(GeO4)3 crystals and glass materials are believed to result from the random distribution of GeO4 tetrahedra around Bi3+ ions which influences the photoluminescence and TL parameters. The CL images of glass-ceramic samples obtained by partial crystallization at 600 °C show luminescent crystalline structures, which are probably responsible for the increase in scintillation efficiency.  相似文献   

13.
This paper reports the results obtained in strontium barium niobate (SBN) nanocrystals in glasses doped with 1, 2.5 and 5 mol% of Er3+ ions. The melt-quenching method was applied to fabricate the glasses with composition SrO–BaO–Nb2O5–B2O3 and further thermal treatment was used to obtain glass ceramic samples from the glass precursor. X-ray diffraction patterns confirmed the formation of SBN nanocrystals with an average size of about 50 nm in diameter. Time-resolved fluorescence spectra for the emission of Er3+ ions at 1550 nm have been analyzed in order to confirm the incorporation of the Er3+ ions into the nanocrystals. Green frequency upconversion emission under excitation at 975 nm coming from the ions in the nanocrystals has been obtained. This intense upconversion is about a factor of 500 higher than that obtained from the ions which reside in the glassy phase. Moreover, temporal evolution studies have been carried out with the purpose of determining the involved upconversion mechanism and the importance of these processes as a source of losses for the optical amplification at 1550 nm.  相似文献   

14.
Photoluminescence and excitation spectra of the spinel-type MgGa2O4 with 0.5 mol. % Mn2+ ions and Eu3+ content from 0 to 8 mol. % have been investigated in this work at room temperature. Polycrystalline samples were synthesized via high-temperature solid-state reaction method. Photoluminescence spectra of all samples exhibit host emission presented by a broad “blue” band peaking ∼430 nm, which consists of at least three elementary bands that correspond to different host defects. Excitation of the host luminescence showed the broad band with a maximum at 360 nm. Characteristic bands of d–d transitions of Mn2+ ions and f–f transitions of Eu3+ ions together with charge-transfer bands (CTB) of these ions were also found on the excitation spectra. Mn2+ and Eu3+ co-doped samples emit in green and red spectral regions. Mn2+ ions are responsible for the green emission band at 505 nm (4Т16А1 transition). The studies of photoluminescence spectra of activated samples with different Eu3+ ions content show characteristic f–f luminesecence of Eu3+ ions. The maximum of Eu3+ emission was found at 618 nm (5D07F2) and optimal concentration of activator ions was around 4 mol. %.  相似文献   

15.
The Ca12Al14O33: Yb3+/Yb2+ single phase nano-phosphor has been synthesized through combustion route and its luminescence and lifetime studies have been carried out up to 20 K using 976 and 266 nm excitations. The samples heated in open atmosphere have shown the presence of Yb in Yb3+ and Yb2+ states. The 976 nm excitation results a cooperative upconversion emission at 486 nm due to the Yb3+ state and a broad band in the blue region and has been assigned to arise from the defect centers. The 266 nm excitation on the other hand results a broad emission band even from as-synthesized phosphor without doping of Yb, the width of which increases in presence of Yb due to the emission from Yb2+ ions formed in heated samples. The white emission covers almost whole visible region with bandwidth 190 nm. The ions in Yb2+ state has been found to increase with the increase in heating temperature up to 1,273 K. A back conversion of Yb2+ to Yb3+ has been observed for higher temperatures. Effect of boric and phosphoric acids as flux on the emission properties of Yb3+ and Yb2+ states have been examined and discussed. Quantum yield of emission has also been determined for different samples.  相似文献   

16.
BaMoO4:Eu (BEMO) powders were synthesized by the polymeric precursor method (PPM), heat treated at 800 °C for 2 h in a heating rate of 5 °C/min and characterized by powder X-ray diffraction patterns (XRD), Fourier Transform Infra-Red (FTIR) and Raman spectroscopy, besides room temperature Photoluminescence (PL) measurements. The emission spectra of BEMO samples under excitation of 394 nm present the characteristic Eu3+ transitions. The relative intensities of the Eu3+ emissions increase as the concentration of this ion increases from 0.01 to 0.075 mol, but the luminescence is drastically quenched for the Ba0.855Eu0.145MoO4 sample. The one exponential decay curves of the Eu3+ 5D07F2 transition, λ exc = 394 nm and λ em = 614 nm, provided the decay times of around 0.54 ms for all samples. It was observed a broadening of the Bragg reflections and Raman bands when the Eu+3 concentration increases as a consequence of a more disordered material. The presence of MoO3 and Eu2Mo2O7 as additional phases in the BEMO samples where observed when the Eu3+ concentration was 14.5 mol%.  相似文献   

17.
The Yb-doped Bi2O3–GeO2 glasses were prepared by the conventional melt quenching technique. Near-infrared (NIR) broadband emission was found at about 1024 nm, and 1330 nm (under 785 nm excitation), and the measured fluorescent lifetime was about several hundred microseconds. The emission intensity of Yb-doped Bi2O3–GeO2 glasses increased with increasing of Yb dopant in our experiments. The NIR emission should be related to Yb3+ and lower valence Bi ions.  相似文献   

18.
Yb3+–Tm3+ codoped tellurite glasses containing silver nanoparticles (NPs) were synthesized and characterized using transmission electron microscopy and optical techniques. The samples’ composition and the nucleation of NPs were investigated using electron diffraction and energy dispersive spectroscopy. For the optical experiments, the samples were excited using a diode laser operating at 980 nm, in resonance with the Yb3+ transition 2F7/22F5/2. Photoluminescence (PL) bands corresponding to Tm3+ transitions were observed at 480, 650, and 800 nm due to the Yb3+→ Tm3+ energy transfer. PL enhancement was achieved by heat-treatment of the samples at 325°C during different time intervals. The growth of the PL bands correlates with the increase of the silver NPs concentration. The relevant mechanisms contributing for the PL characteristics are discussed.  相似文献   

19.
Rare earth elements (RE = Eu3+& Dy3+)and Bi3+ doped Y2O3 nanoparticles were synthesized by urea hydrolysis method in ethylene glycol, which acts as reaction medium as well as a capping agent, at a low temperature of 140 °C,followed by calcination of the obtained product. Transmission electron microscope (TEM) images reveals that ovoid shaped Y2O3 nanoparticles of around 22–24 nm size range were obtained in this method. The respective RE and Bi3+ doped Y2O3 precursor nanoparticles when heated at 600 and 750 °C, retains the same shape as that of the as-synthesized Y2O3 precursor samples. From EDAX spectra, the incorporation of RE ions into the host has been studied. XRD pattern reveals the crystalline nature of the heated nanoparticles and indicate the absence of any impurity phase other than cubic Y2O3.However, the as-synthesized nanoparticles were highly amorphous without the presence of any sharp XRD peaks. Photoluminescence study suggests that the synthesized samples could be used as red (Eu3+), yellow (Dy3+), blue and green (Bi3+)emitting phosphors.  相似文献   

20.
In this paper, a single crystal of 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 with dimensions of Φ 30×10 mm was grown by the top-seeded-solution growth method. X-ray powder diffraction results show that the as-grown crystal possesses the rhombohedral perovskite-type structure. The dielectric, piezoelectric and electrical conductivity properties were systematically investigated with 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples. The room-temperature dielectric constants for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples are found to be 650, 740 and 400 at 1 kHz. The (T m, ε m) values of the dielectric temperature spectra are almost independent of the crystal orientations; they are (306°C, 3718), (305°C, 3613) and (307°C, 3600) at 1 kHz for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal. The optimum poling conditions were obtained by investigating the piezoelectric constants d 33 as a function of poling temperature and poling electric field. For the 〈001〉 and 〈110〉 crystal samples, the maximum d 33 values of 146 and 117 pC/N are obtained when a poling electric field of 3.5 kV/mm and a poling temperature of 80°C were applied during the poling process. The as-grown 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 crystal possesses a relatively large dc electrical conductivity, especially at higher temperature, having a value of 1.98×10−11 Ω−1⋅m−1 and 3.95×10−9 Ω−1⋅m−1 at 25°C and 150°C for the 〈001〉 oriented crystal sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号