首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-phase microextraction (SPME) based on carboxylated single-walled carbon nanotube fibers was used to extract several chlorophenols (CPs) and organochlorine pesticides (OCPs) from aqueous samples prior to their determination by GC with electron capture detection. The main parameters affecting microextraction (temperature, time, stirring rate and salting-out effect) and the conditions of the thermal desorption in the GC injector were optimized. Compared with commercial SPME fibers, the fiber presented better selectivity and sensitivity. Linear response was found for the concentration range between 2 and 1000 ng L?1 (20–1000 ng L?1 for CPs), and the limits of detection were in the range from 0.07 to 4.36 ng L?1. The repeatability expressed as relative standard deviation ranged from 4.1 % to 8.2 % and the fiber-to-fiber reproducibility for four prepared fibers was between 6.5 % and 10.8 %. The method was successfully applied to the analysis of CPs and OCPs in lake water and waste water samples. Recovery was tested with spiked lake water and waste water samples, with values ranging from 89.7 % to 101.2 % in case of waste water samples.
Figure
Raman spectra: (A) SWNTs, and (B) Oxidized SWNTs  相似文献   

2.
We demonstrate the physical principles for the construction of a nanometer-sized magnetoresistance device based on the Aharonov-Bohm effect [Phys. Rev. 115, 485 (1959)]. The proposed device is made of a short single-walled carbon nanotube (SWCNT) placed on a substrate and coupled to a tip/contacts. We consider conductance due to the motion of electrons along the circumference of the tube (as opposed to the motion parallel to its axis). We find that the circumference conductance is sensitive to magnetic fields threading the SWCNT due to the Aharonov-Bohm effect, and show that by retracting the tip/contacts, so that the coupling to the SWCNT is reduced, very high sensitivity to the threading magnetic field develops. This is due to the formation of a narrow resonance through which the tunneling current flows. Using a bias potential the resonance can be shifted to low magnetic fields, allowing the control of conductance with magnetic fields of the order of 1 T.  相似文献   

3.
4.
Single-wall carbon nanotubes (SWNTs) and their fluorinated derivatives (F-SWNTs) were reacted with organic peroxides including benzoyl and lauroyl peroxide to produce phenyl and undecyl sidewall functionalized SWNTs, respectively, which were characterized by Raman, FTIR, and UV-Vis-NIR spectra as well as TGA/MS, TGA/FTIR, and TEM data.  相似文献   

5.
6.
A roughed silver electrode modified with gold/silver nanoparticles is used as a substrate, on which high quality SERS of SWCNTs are obtained, indicating that the modified silver electrode is a high-quality SERS-active substrate for SWCNTs. Some new bands that indicate the structure of SWCNTs were obtained. The gold/silver nanoparticles modified on the roughed silver electrode surface can not only make sure the strong adsorption of SWCNTs in this system but also play an important role in magnifying the surface local electric field near the silver electrode surface through resonant surface plasmon excitation. From the rich information on the modified silver electrode obtained from the SERS and the potential dependent SERS, we may deduce the probable SERS mechanism in the process. The theory and experiment results indicate that it is can be used as a new technique for monitoring synthesis quality of SWCNTs. The probable reasons are given.  相似文献   

7.
Niu  Hongyun  Shi  Yali  Cai  Yaqi  Wei  Fusheng  Jiang  Guibin 《Mikrochimica acta》2009,164(3-4):431-438
Microchimica Acta - This study presents a new, easily made and practical solid-phase extraction disk, a single-walled carbon nanotubes (SWCNTs) disk. The properties of the disk were evaluated by...  相似文献   

8.
9.
10.
Solvatochromic shifts in the absorbance and fluorescence spectra are observed when surfactant-stabilized aqueous single-walled carbon nanotube (SWNT) suspensions are mixed with immiscible organic solvents. When aqueous surfactant-suspended SWNTs are mixed with o-dichlorobenzene, the spectra closely match the peaks for SWNTs dispersed in only pure o-dichlorobenzene. These spectral changes suggest that the hydrophobic region of the micelle surrounding SWNTs swells with the organic solvent when mixed. The solvatochromic shifts of the aqueous SWNT suspensions are reversible once the solvent evaporates. However, some surfactant-solvent systems show permanent changes to the fluorescence emission intensity after exposure to the organic solvent. The intensity of some large diameter SWNT (n, m) types increase by more than 175%. These differences are attributed to surfactant reorganization, which can improve nanotube coverage, resulting in decreased exposure to quenching mechanisms from the aqueous phase.  相似文献   

11.
This study was focused on the preparation and characterization of biofilms based on pectin/polyethylene glycol 20000 (PEG) blend and halloysite nanotubes (HNTs). The obtained blends loaded with a natural nanoclay are proposed as sustainable alternative to the polymers produced from non-renewable resources such as fossil fuels. Properties of technological interest have been monitored and they were correlated to the structural features of the nanocomposites. It turned out that the wettability of the films can be tuned by changing the composition and the distribution of HNTs into the material as well as the surface roughness. The tensile properties of the blend are enhanced by the presence of the nanoclays. The PEG crystallinity is reduced by the nanoparticles and preserved if a certain amount of pectin is added.  相似文献   

12.
13.
Carbon nanotubes show promising prospects for applications ranging from molecular electronics to ultrasensitive biosensors. An important aspect to understanding carbon nanotube properties is their interactions with biomolecules such as peptides and proteins, as these interactions are important in our understanding of nanotube interactions with the environment, their use in cellular systems, as well as their interface with biological materials for medical and diagnostic applications. Here we report the sequence and conformational requirements of peptides for high-affinity binding to single-walled carbon nanotubes (SWNTs). A new motif, X(1)THX(2)X(3)PWTX(4), where X(1) is G or H, X(2) is H or D or null, X(3) is null or R, and X4 is null or K, was identified from two classes of phage-displayed peptide libraries. The high affinity binding of the motif to SWNTs required constrained conformations which were achieved through either the extension of the amino acid sequence (e.g., LLADTTHHRPWT) or the addition of a constrained disulfide bond (e.g., CGHPWTKC). This motif shows specific high-affinity to the currently studied SWNTs, compared to previously reported peptides. The conformations of the identified peptides in complex with SWNTs were also characterized with a variety of biophysical methodologies including CD, fluorescence, NMR spectroscopy, and molecular modeling.  相似文献   

14.
The vacuum space inside carbon nanotubes offers interesting possibilities for the inclusion, transportation, and functionalization of foreign molecules. Using first-principles density functional calculations, we show that linear carbon-based chain molecules, namely, polyynes (C(m)H(2), m = 4, 6, 10) and the dehydrogenated forms C(10)H and C(10), as well as hexane (C(6)H(14)), can be spontaneously encapsulated in open-ended single-walled carbon nanotubes (SWNTs) with edges that have dangling bonds or that are terminated with hydrogen atoms, as if they were drawn into a vacuum cleaner. The energy gains when C(10)H(2), C(10)H, C(10), C(6)H(2), C(4)H(2), and C(6)H(14) are encapsulated inside a (10,0) zigzag-shaped SWNT are 1.48, 2.04, 2.18, 1.05, 0.55, and 1.48 eV, respectively. When these molecules come inside a much wider (10,10) armchair SWNT along the tube axis, they experience neither an energy gain nor an energy barrier. They experience an energy gain when they approach the tube walls inside. Three hexane molecules can be encapsulated parallel to each other (i.e., nested) inside a (10,10) SWNT, and their energy gain is 1.98 eV. Three hexane molecules can exhibit a rotary motion. One reason for the stability of carbon chain molecules inside SWNTs is the large area of weak wave function overlap. Another reason concerns molecular dependence, that is, the quadrupole-quadrupole interaction in the case of the polyynes and electron charge transfer from the SWNT in the case of the dehydrogenated forms. The very flat potential surface inside an SWNT suggests that friction is quite low, and the space inside SWNTs serves as an ideal environment for the molecular transport of carbon chain molecules. The present theoretical results are certainly consistent with recent experimental results. Moreover, the encapsulation of C(10) makes an SWNT a (purely carbon-made) p-type acceptor. Another interesting possibility associated with the present system is the direction-controlled transport of C(10)H inside an SWNT under an external field. Because C(10)H has an electric dipole moment, it is expected to move under a gradient electric field. Finally, we derive the entropies of linear chain molecules inside and outside an open-ended SWNT to discuss the stability of including linear chain molecules inside an SWNT at finite temperatures.  相似文献   

15.
We have investigated atomic and electronic structures of hydrogen-chemisorbed single-walled carbon nanotubes (SWCNTs) by density functional calculations. We have searched for relative stability of various hydrogen adsorption geometries with coverage. The hydrogenated SWCNTs are stable with coverage of H/C, theta >/= 0.3. The circular cross sections of nanotubes are transformed to polygonal shapes with different symmetries upon hydrogen adsorption. We find that the band gap in carbon nanotubes can be engineered by varying hydrogen coverage, independent of the metallicity of carbon nanotubes. This is explained by the degree of sp(3) hybridization.  相似文献   

16.
Exposing single-walled carbon nanotubes to room-temperature UV-generated ozone leads to an irreversible increase in their electrical resistance. We demonstrate that the increased resistance is due to ozone oxidation on the sidewalls of the nanotubes rather than at the end caps. Raman and X-ray photoelectron spectroscopies show an increase in the defect density due to the oxidation of the nanotubes. Using ultraviolet photoelectron spectroscopy, we show that these defects represent the removal of pi-conjugated electron states near the Fermi level, leading to the observed increase in electrical resistance. Oxidation of carbon nanotubes is an important first step in many chemical functionalization processes. Because the oxidation rate can be controlled with short exposures, UV-generated ozone offers the potential for use as a low-thermal-budget processing tool.  相似文献   

17.
Many applications based on single-walled carbon nanotubes (SWNTs) require chemical modification of carbon nanotube to optimize the functionalities of the device. In this contribution we discuss the properties of SWNTs immersed in a hydrobromic acid (HBr) solution. Changes of atomic and electronic structures of bromine modified SWNTs were investigated using photoelectron spectroscopy (PES). Spectra of SWNTs before and after immersion in the HBr solution exhibit different features. To understand the mechanism of interaction between SWNTs and bromine, we performed density-functional theory calculations to reveal the structural changes, adsorption energy and chemical bonding information of SWNTs interacting with bromine. In addition, based on the Gelius model, from the molecular orbitals (MOs), we calculated ultraviolet photoelectron spectra (UPS) of SWNTs with and without functionalizing and compared them with the experiment. The present study is a first step in the understanding of the functionalization mechanism of carbon nanotubes.  相似文献   

18.
Reversed micelles containing metallic ions have been used as precursors of novel catalysts for the gas-phase synthesis of single-walled carbon nanotubes (SWNTs). This technique possesses the following advantages: (i) excellent solubility in organic solvents, which are used as reactants and (ii) facile preparation of multicomponent catalysts enabling systematic screening of catalyst compositions for the synthesis of SWNTs. In this study, we report the results of the screening study on the catalytic behavior of Fe-Mo binary catalysts during the synthesis of SWNTs. The results suggested that the catalytic ability was closely related to the strain of the crystal structure of Fe-Mo catalysts formed in the reaction and/or the phase transition caused by dissolution of the Mo atoms. The addition of lithium to the Fe-Mo binary catalysts has revealed an increase in the yield of SWNTs.  相似文献   

19.
A new chromatographic purification of single-walled carbon nanotubes using high-speed countercurrent chromatography is reported. The purification was accomplished on the basis of experiment that dispersed the single-walled carbon nanotubes with sodium dodecyl sulfate, and the result mixture was separated using the two phase system composed of n-butanol/water = 1/1 (v/v). The sizes of SWNTs separated were observed by scanning electron microscopy. The results demonstrated that the high-speed countercurrent chromatography possessed a good efficency for purification of single-walled carbon nanotubes.  相似文献   

20.
The detection of nanotube carbons in solution by (13)C NMR is reported. The highly soluble sample was from the functionalization of (13)C-enriched single-walled carbon nanotubes (SWNTs) with diamine-terminated oligomeric poly(ethylene glycol) (PEG(1500N)). The ferromagnetic impurities due to the residual metal catalysts were removed from the sample via repeated magnetic separation. The nanotube carbon signals are broad but partially resolved into two overlapping peaks, which are tentatively assigned to nanotube carbons on semiconducting (upfield) and metallic (downfield) SWNTs. The solid-state NMR signals of the same sample are similarly resolved. Mechanistic and practical implications of the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号