首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimeric and oligomeric Al and Zn-containing isobutyl silsesquioxanes (POSS) were studied to investigate their thermal stability both in inert and oxidant atmosphere, by means of Differential Scanning Calorimetry (DSC) and thermogravimetric analyses (TGA).Thermo-oxidative degradation leads to an important solid residue yield, as a consequence of the POSS oxidation to a thermally stable ceramic phase.The study of the differences in degradation pathways of both metal POSS derivatives clearly shows a competition between two possible mechanisms for product thermal behaviour, namely evaporation and oxidation.The metal POSS compounds were incorporated via melt blending into a PP matrix and the composites thermal properties were studied by thermogravimetric analyses.Thermo-oxidative degradation of composites is strongly affected by the presence of metal containing POSS, resulting in an improved thermal stability, in terms of higher weight loss temperature.  相似文献   

2.
Composites of poly(vinyl ester) (PVE) with copper hydroxy dodecyl sulfate (CHDS) were prepared by thermal curing. The efficiency of the additive, CHDS, in reducing flammability is demonstrated via cone calorimetry and thermogravimetric analysis (TGA). The addition of 1-10% by mass of the CHDS additive resulted in significant increments in char formation (∼4-11%) from thermogravimetric analysis (TGA). Incorporation of the CHDS into the polymer matrix at these low concentrations leads to substantial reductions in the total heat release (∼20-30%) but no significant change in the peak heat release rate. The composite materials generally ignite more quickly, however, the flame extinguishes faster for the composites relative to the virgin polymer. X-ray diffraction (XRD) and infrared spectroscopic analyses of the residues collected at various stages during thermal decomposition of the composites, suggest the participation of copper-containing species in promoting enhanced thermal stability of PVE.  相似文献   

3.
Nanocomposites of polystyrene, high impact polystyrene, acrylonitrile-butadiene-styrene terpolymer, polypropylene, and polyethylene were prepared using a methyl methacrylate oligomerically-modified clay by melt blending and the thermal stability and fire retardancy were studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed morphology, depending on the polymer.  相似文献   

4.
Nanocomposites of polyamide 6 with 5 wt.% multiwall carbon nanotubes are investigated to clarify their potential as regards the fire retardancy of polymers. The nanocomposites are investigated using SEM, electrical resistivity, and oscillatory shear rheology. The pyrolysis is characterized using thermal analysis. The fire behaviour is investigated with a cone calorimeter using different external heat fluxes, by means of the limiting oxygen index and the UL 94 classification. The fire residue is characterized using SEM. The comprehensive fire behaviour characterization not only allows the materials’ potential for implementation in different fire scenarios and fire tests to be assessed, but also provides detailed insight into the active mechanisms. The increased melt viscosity of the nanocomposites and the fibre-network character of the nanofiller are the dominant mechanisms influencing fire performance. The changes are found to be adjuvant with respect to forced flaming conditions in the cone calorimeter, but also deleterious in terms of flammability.  相似文献   

5.
A series of aluminum-containing layered double hydroxides (LDHs), containing Mg, Ca, Co, Ni, Cu and Zn as the divalent metals, have been prepared by the co-precipitation method and used to prepare nanocomposites of PMMA by in situ bulk polymerization. The additives were characterized by Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD) and thermogravimetric analysis while the polymer composites were characterized by XRD, transmission electron microscopy, differential scanning calorimetry and cone calorimetry. Polymerization of methyl methacrylate in the presence of these undecenoate LDHs results in composites with enhanced thermal stability. The glass transition temperatures of the composites and the pristine polymers are found to be around 110 °C; this suggests that the presence of these additives has little effect on the polymer. It is found that the additive composition and the dispersion state of LDHs agglomerates in the polymer matrix influence the fire properties of composites as measured by cone calorimetry.  相似文献   

6.
An oligomerically-modified clay was made using a surfactant which is the ammonium salt of an oligomer. The newly modified clay contains 37.5% inorganic clay and 62.5% oligomer. Polyethylene and polypropylene nanocomposites were made by melt blending the polymer with the oligomerically-modified clay in a Brabender mixer at various clay loadings. The structure of the nanocomposites was characterized by X-ray diffraction and transmission electron microscopy. Mechanical testing showed that the polyethylene nanocomposites had an enhanced Young's modulus and slightly decreased elongation, while the changes for polypropylene nanocomposites are small compared with the virgin polymers. The thermal stability and flame properties were evaluated using thermogravimetric analysis and cone calorimetry, respectively. The plasticising effect of the oligomer was suppressed because of the increased inorganic content. The maximum reduction in peak heat release rate is about 40%.  相似文献   

7.
In the course of our investigations on halogen-free fire-retardant solutions for PMMA, the influence of oxide nanoparticles (TiO2, Al2O3) on the thermal stability and fire behaviour of PMMA blended with phosphinate additives (Exolit OP930 and OP1311) has been studied by thermogravimetric analysis and cone calorimetry. For each mixture, the residues obtained after combustion were examined and characterized by SEM, X-ray diffraction and X-ray microprobe analysis. Some synergistic effects were obtained between nanometric alumina and OP930 additive leading to the reduction of peak of heat released rate and of total heat released up to 30% and to the increase of time to ignition. From the results obtained, it can be proposed that OP930 and OP1311 act principally in the condensed phase, the presence of oxides playing a reinforcement role in the carbonaceous layer promoted by the phosphinate additives.  相似文献   

8.
An oligomerically-modified clay has been used to fabricate nanocomposites with styrenic polymers, such as polystyrene, high-impacted polystyrene, poly(styrene-co-acrylonitrile) and acrylonitrile-butadiene-styrene by melt blending. The clay dispersion was evaluated by X-ray diffraction and bright field transmission electron microscopy. All of the nanocomposites have a mixed delaminated/intercalated structure. The fire properties of nanocomposites were evaluated by cone calorimetry a nd the mechanical properties were also evaluated.  相似文献   

9.
Two layered double hydroxides (LDHs), calcium aluminum undecenoate (Ca3Al) and calcium iron undecenoate (Ca3Fe), have been prepared by the co-precipitation method. XRD analysis of these LDHs reveals that they are layered materials and FT-IR and TGA confirmed the presence of the undecenoate anions in the material produced. The PMMA composites were prepared by bulk polymerization and the samples were characterized by XRD, TEM, TGA and cone calorimetry. Both additives greatly enhance the thermal stability of PMMA, while the calcium aluminum LDH gives better results when the fire properties were examined using the cone calorimeter.  相似文献   

10.
Clay was modified with an oligomeric surfactant containing styrene and lauryl acrylate units along with a small amount of vinylbenzyl chloride to permit the formation of an ammonium salt so that this can be attached to a clay. The oligomerically-modified clay contains 50% inorganic clay, and styrenic polymer nanocomposites, including those of polystyrene (PS), high-impact polystyrene (HIPS), styrene-acrylonitrile copolymer (SAN) and acrylonitrile-butadiene-styrene (ABS), were prepared by melt blending. The morphologies of the nanocomposites were evaluated by X-ray diffraction and transmission electron microscopy. Mixed intercalated/delaminated nanocomposites were formed for SAN and ABS while largely immiscible nanocomposites were formed for PS and HIPS. The thermal stability and fire properties were evaluated using thermogravimetric analysis and cone calorimetry, respectively. The plasticization from the oligomeric surfactant was suppressed and the tensile strength and Young's modulus were improved, compared to similar oligomerically-modified clays with higher organic content.  相似文献   

11.
This paper deals with the fire behaviour of poly (ethylene terephthalate) (PET) filled with Exolit OP950, a zinc phosphinate fire retardant, and three polyhedral oligomeric silsesquioxanes (POSS) having different chemical structures. Regardless of the POSS type, intumescence occurs during combustion, but the insulation properties of the chars produced are different. Best reductions on total heat evolved (THE) and on cumulative CO2 with no increase in CO emissions are observed when dodecaphenyl POSS is used. This may be related to its thermal degradation pathway, releasing via this process volatile organic species contributing on intumescence and producing an effective protective layer having a foliated structure.  相似文献   

12.
Polypropylene (PP) and Polyamide 6 (PA6) samples, with and without fire retardants (FR) (ammonium polyphosphate in PP, and a mixture of organic aluminium phosphinate and melamine polyphosphate (OP 1311) in PA 6) and nanofillers (NC) were burned under different fire conditions in order to compare their toxic product yields. Fire effluents (CO, smoke and hydrocarbons) were generated using a steady state tube furnace (BS 7900, ISO TS 19700) for the separate materials and fire retarded and nanocomposite modifications of these materials under flaming conditions. Under well-ventilated conditions yields of carbon monoxide (CO) for all PP samples are similar, whereas for PA6 samples much higher yields of CO for PA6 + FR and PA6 + NC are observed. The highest yields of CO occur for both pure polymers in under-ventilated fire conditions when fire retardant and nanoclay are combined together. For PP the smoke is fairly independent of fire condition, but the PP + FR + NC shows less agglomeration. For PA6 the sample containing OP 1311 shows consistently higher smoke yields. For hydrocarbon yields similar effects are observed for both PP and PA6 polymers; the highest yields are for PA6 + NC, except under-ventilated fires where PA6 + FR produce the most; for PA6 + FR + NC samples the lowest yields are observed, compared to either NC or FR formulations.  相似文献   

13.
Montmorillonite was organically modified using an ammonium salt containing 4-acetylbiphenyl. This clay (BPNC16 clay) was used to prepare polystyrene (PS), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) nanocomposites. Polystyrene nanocomposites were prepared both by in situ bulk polymerisation and melt blending processes, while the ABS and HIPS nanocomposites were prepared only by melt blending. X-ray diffraction and transmission electron microscopy were used to confirm nanocomposite formation. Thermogravimetric analysis was used to evaluate thermal stability and the flammability properties were evaluated using cone calorimetry. By thermogravimetry, BPNC16 clay was found to show high thermal stability, and by cone calorimetry, a decrease in both the peak heat release rate and the mass loss rate was observed for the nanocomposites.  相似文献   

14.
An oligomerically-modified clay containing maleic anhydride was used to prepare polystyrene-clay nanocomposites by melt blending and the effect of this modified clay on the thermal stability and fire performance was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed immiscible/intercalated/delaminated morphology. The maleic anhydride modified clay improved the compatibility between the clay and the polystyrene.  相似文献   

15.
Polystyrene/layered double hydroxides (PS/LDHs) nanocomposites were prepared by free radical polymerization of styrene monomer in the presence of LDHs intercalated with 4,4′-azobis(4-cyanopentanoate) anions (LDH-ACPA). XRD and ATR-IR are used to confirm that the materials produced are layered and the presence of the azo-initiator anions in these LDHs. These LDHs were used successfully to polymerize styrene and both XRD and TEM images of the composites support the formation of a mixed exfoliated-intercalated nanocomposite for ZnAl-ACPA but a microcomposite for MgAl-ACPA. The magnesium-containing LDHs decreased the glass transition temperature (Tg) of the composites while ZnAl-ACPA did not affect Tg significantly. The Tg depression is related to enhanced polymer dynamics due to the extra free volume at the LDH additive-polymer interface. A reduction in the onset of thermal decomposition temperature was observed in PS/LDH compared to neat PS, likely due to the early decomposition of the LDH. The fire performance, as evaluated by the cone calorimeter, reveal that PS-ZnAl-ACPA shows enhanced fire properties compared to PS-MgAl-ACPA.  相似文献   

16.
17.
Sawdust of Scots Pine sapwood was chemically modified with various alkyl- and phenylchlorophosphorus compounds. The formation of covalent bonds was confirmed with solid state CP-MAS 13C NMR.According to thermogravimetric analysis (TGA), all phosphorus compounds decreased the temperature for the maximum rate of pyrolysis (from 350 °C to max. 240 °C) and increased the char formation (from 25% to max. 54%). Variation of the alkyl groups (C2-C8) had no significant effect. Phenylphosphates decrease the temperature of pyrolysis more efficiently than the alkyl analogues, due to higher thermal stability. The order in which the phenylphosphorus compounds affect the pyrolysis of the modified sawdust is consistent with their acidity order: organophosphate > organophosphonate ? organophosphinate.All phosphorus compounds used in this study reduce the equilibrium moisture content (EMC). Whereas the results obtained with the dialkyl phosphates are relatively poor, significant reductions in EMC can be achieved with the phenylphosphorus compounds.  相似文献   

18.
Copolymer nanocomposites were prepared by suspension copolymerization of bis[2-(methacryloyloxy)ethyl] phosphate and methyl methacrylate, together with bis(2-ethylhexyl) phosphate layered double hydroxide and a montmorillonite, Cloisite 93A. X-ray diffraction and transmission electron microscopy were used to characterize the morphology of nanocomposites and the dispersion of additives in the polymer. The thermal stability of the nanocomposites has been assessed by thermogravimetric analysis and cone calorimetry has been used to study the fire properties. Bis[2-(methacryloyloxy)ethyl] phosphate not only copolymerized with MMA, but also aids in the dispersion of additives in PMMA. The copolymer nanocomposites have better dispersion and higher degradation temperature and more char mass than the corresponding PMMA nanocomposites. The largest peak reduction in the heat release rate of the copolymer nanocomposites are 52 and 65% for LDH and MMT additives, respectively.  相似文献   

19.
Multiwall carbon nanotubes (MWNT)/linear low density polyethylene (LLDPE) nanocomposites were studied in order to understand the stabilisation mechanism for their thermal and oxidative degradation. Thermogravimetry coupled with infrared evolved gas analysis and pyrolysis gas chromatography-mass spectrometry demonstrate that MWNT presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. Whereas thermal oxidative degradation in air is delayed by about 100 °C independently from MWNT concentration in the range used here (0.5-3.0 wt.%). The stabilisation is due to formation of a thin protective film of MWNT/carbon char composite generated on the surface of the nanocomposites is shown by SEM and ATR FTIR of degradation residues. The film formation mechanism is discussed.  相似文献   

20.
The influence of carbon nanotubes on the photodegradation of EVA/carbon nanotube nanocomposites was studied by irradiation under photooxidative conditions (at λ > 300 nm, at 60 °C and in the presence of oxygen). The influence of the nanotubes on both the photooxidation mechanism of EVA and the rates of oxidation of the matrix was characterized on the basis of infrared analysis. On one hand, it was shown that the carbon nanotubes act as inner filters and antioxidants, which contribute to reduction in the rate of photooxidation of the polymeric matrix. On the other hand, it was shown that light absorption could provoke an increase in the local temperature and then induce the photooxidation of the polymer. The competition between these three effects determines the global rate of photooxidation of the polymeric matrix. Several factors are involved, the concentration of the carbon nanotubes, the morphology of the nanotubes and the functionalization of the nanotube surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号