首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photophysical properties of aqueous solutions of the styryl dye 4-[(E)-2-(3,4-dimethoxyphenyl)-1-ethylpyridinium] perchlorate (1) in the presence of cucurbit[n]urils (CB[n]; n = 5, 6, 8) have been studied by fluorescent spectroscopy methods. The fluorescence intensity of a 10–6 mol L–1 solution of 1 increases by a factor of 12.6 upon the formation of 1 : 1 inclusion complexes with CB[6] or 1.3 in complexes with CB[8]. Upon the formation of inclusion complexes, the average lifetime of the electronically excited state of 1 increases to about 1 ns for both CB[6] and CB[8]. On the basis of fluorescence anisotropy measurements, the rotational relaxation times were estimated to be 408, 314, and 183 ps for the complexes with CB[6], CB[8], and for unbound 1, respectively. Using the fluorescence titration method developed for the case of poorly soluble cavitands, the binding constant of 1 with CB[6] was determined to be 1.1 × 105 L mol–1. The addition of CB[5] does not lead to changes in the photophysical properties of a solution of 1, indicating the absence of complexes between CB[5] and 1. It has been found on the basis of the experimental data that the fluorescence rate constant of 1 decreases about twice in the complex with CB[8], but doubles in the complex with CB[6].  相似文献   

2.
Polymer copper(II) complexes with 5-bromosalicylaldehyde heptanoylhydrazone (I) and 3,5-dibromosalicylaldehyde acetylhydrazone (II) are synthesized and structurally characterized. In complex I, the formation of the polymer is due to the coordination of the hydrazide nitrogen atom to the copper(II) ion of the adjacent fragment. In complex II, polymer formation is due to the binding of the monomer fragments by dipyridyl linkers (CIF files CCDC 947908 (I) and 947909 (II)).  相似文献   

3.
In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests (38) to two hosts (1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants (K a ) covered five orders of magnitude, ranging from 56 M?1 for guest 6 binding with host 2 up to 7.43 × 106 M?1 for guest 6 binding to host 1.  相似文献   

4.
Sterically hindered meso-tetramethyl-meso-tetraarylcalix[4]pyrroles 1-4 where aryl is p-fluorophenyl 1, p-chlorophenyl 2, and p-methylphenyl 3, 4 (configurational isomers) are synthesized and purified by the recrystallization technique. They are characterized by IR, 1H and 13C NMR, and mass spectroscopy. Configurational isomers ααββ (3) and αααα (4) of meso-tetramethyl-meso-tetramethylphenylcalix[ 4]pyrroles are assigned by the 1H NMR studies and confirmed by the X-ray diffraction analysis. The single crystal X-ray diffraction analysis reveals that the ethanol adduct of 1, the acetone adduct of 2 and 3 adopt the 1,2-conformation while the acetone-water adduct of 1 and the acetone adduct of 4 adopt partial cone and cone conformations respectively. The conformational diversity is due to non-covalent interactions among the encapsulated guest, pyrrolic NH protons, and meso- substituents. Anion binding studies (F, Cl, CH3COO, HSO 4 ? ) are carried out through 1H NMR titrations; the binding constants are evaluated using the EQNMR program, displaying that they are more selective towards fluoride rather than other anions with the 1:1 stoichiometry. The configuration of compounds drastically influences the ion-recognition processes.  相似文献   

5.
Two mononuclear Pt(II) complexes, Pt(dbbpy)Cl2 (1) and [Pt(dbbpy)2](PF6)2 (2) (dbbpy?=?4,4′-ditertbutyl-2,2′-biyridine) were synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, 1H NMR, and ESI–MS. Their binding affinities for both double-stranded (DS) calf thymus DNA (ct-DNA) and G-quadruplex DNA (HT21 and BCL-2) were investigated. In addition to structural differences, complex 1 displayed higher binding affinity for DS ct-DNA, whereas positively charged complex 2 was selective for binding to G-quadruplex DNA over DS DNA. The time-dependent cleavage of supercoiled circular plasmid pBR322 DNA by 1 was observed using agarose gel electrophoresis, whereas complex 2 hardly cleaved DS DNA. Stabilization of G-quadruplex HT21 DNA by both complexes was assessed by PCR stop assays. Both complexes exhibited moderate activities for inhibition of topoisomerase I as well as modest antiproliferation activities toward cancer cells in CKK-8 assays.  相似文献   

6.
The rationally designed polydentate ligands, L 1 and L 2 , based on the pyridinyl moiety and the hydrazone fragment have been synthesized to coordinate zinc(II) ions. We utilize pyridine as a rigid core connecting two bipyridines as ligand building blocks with a hydrozone linker for the L 1 . The L 2 has a reversed design in which a bipyridine was used as a hinging-available building block of the ligand core, connecting two pyridazine arms with a hydrazone linker. Two novel helical dizinc(II) complexes were obtained by the reaction of L 1 and L 2 with zinc(II) perchlorate in acetonitrile. The structures of both helicates were confirmed by X-ray diffractometry. Single-stranded helicate Zn 2 L 1 contains two zinc ions bridged by an oxygen atom. Except for the L 2 ligand, no other bridging species were found between the two zinc ions in the double-stranded helicate Zn 2 L 2 2 . The self-assembling process of helicate Zn 2 L 1 in solution state was studied by UV–Vis spectrometric titration experiments. The stepwise formation constants imply a slightly positive cooperative behavior for the formation of helicates.  相似文献   

7.
The coumarilate (coum?) complexes of CoII(1), NiII(2) CuII(3) and ZnII(4) were synthesized and characterized by elemental analysis, magnetic susceptibility, solid-state UV–Vis, FTIR spectra, thermoanalytical TG–DTG/DTA and single-crystal X-ray diffraction methods. It was found that all of the complex structures have 2 mol (coum?) ligand bonded as monoanionic monodentate in the structures of 1 and 2 while they were coordinated to metal cations as monoanionic bidentate in the complexes 3 and 4. There was not any hydrate water in the metal complexes. The complexes of 1 and 2 have four moles of aqua ligand, and the other complexes have two moles. Thermal decomposition of each complex starts with dehydration, and then the decomposition of organic parts goes. The thermal dehydration of the complexes takes place in one (for the compounds of 2, 3, 4) or two (for the compound 1) steps. The decomposition mechanism and the thermal stability of the complexes under investigation were determined on the basis of their structures. Metal oxides were obtained as the final decomposition product.  相似文献   

8.
The complex formation of lithium with benzo-15-crown-5 (B15C5) was investigated. The complexes LiB15C5H2OX, where X = Cl? (1), I? (2), (3), (5), and LiBF4B15C5 (4) were synthesized and studied by IR spectroscopy. Complexes 1–4 were examined by X-ray diffraction. According to IR spectroscopy data, the crown ether conformation changes upon dissolution. The interaction of the extracted complex with the solvent was identified.  相似文献   

9.
Novel potentially bidentate NO Schiff base ligands, HL 1 and HL 2 derived from condensation reaction of 2′-methoxyphenyl-2-ethylamine with salicylaldehyde (HL 1 ) and with 2-hydroxy-4-methoxybenzaldehyde (HL 2 ), and their nickel complexes were synthesized and characterized by usual spectroscopic techniques such as FT-IR, UV–Vis, 1H NMR, 13C NMR and elemental analysis. It was revealed that the bidentate Schiff base ligands coordinate with Ni(II) ions yielding mononuclear complexes with 1:2 (metal/ligand) stoichiometry. This result has been determined by using X-ray crystallographic technique of HL 2 and the nickel complex derived from HL 1 (Ni(II)-2L 1 ). So, the structural studies showed that the two Ni(II) complexes adopt a square-planar geometry around the central metal ion. Cyclic voltammetry studies were investigated in 0.1 M TBAP in DMF solution and indicate that the nickel complexes show one reduction wave related to Ni(II)/Ni(I) redox couple. The electrocatalytical properties of these complexes were also studied in the same electrolyte medium. Their electrocatalytic performances have been tested toward the electroreduction reaction of bromocyclopentane and iodobenzene, showing a promoted activity in the case of the Ni(II)-2L 2 complex.  相似文献   

10.
Two new organotin(IV) carboxylate complexes, [PhSnO(L1)]6 ·4(toluene) (1) (HL1 = 2-(4-methylbenzoyl)benzoic acid) and [PhSnO(L2)]6 (2) (HL2 = 2-(4-ethylbenzoyl)benzoic acid), were synthesized by the reaction of ligand acids with mono-organotin complex in 1:1 molar ratio. The synthesized complexes have been structurally characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analyses. Both 1 and 2 are hexanuclear organotin complex with drum-shaped structure. In the solid state of 1 and 2, 1D and 2D supramolecular networks are formed by hydrogen bonds, C–H···π or π···π interactions. Furthermore, the preliminary antitumor activities of 1 and 2 have been studied. The antitumor results show they exhibit good biological activities and may be explored for potential antitumor drugs.  相似文献   

11.
We studied on the structural requirement of C11b chirality of tetrabenazine (TBZ) analogs as vesicular monoamine transporter 2 (VMAT2) ligands. TBZ analogs (2, 6a, 6b) and 18F-radiolabeled [18F]6a and [18F]6b with eliminated C11b chirality were synthesized and characterized. Competition studies demonstrated that 2, 6a and 6b displayed much lower in vivo VMAT2 bindings than TBZ. MicroPET imaging studies of [18F]6a and [18F]6b showed negligible accumulation in VMAT2-enriched regions as compared with the known VMAT2 ligand 18F-FP-(+)-DTBZ. These results suggest that C11b chirality of TBZ analogs is essential for in vivo VMAT2 binding bioactivity.  相似文献   

12.
A new open-cubane MnIII, [{(H2O)MnIIIL}{MnIIIL}]2·2(CH3OH).2(CH3CH2OH)·2Cl, 1 where H 2 L=[N-(2-hydroxyethyl)-3-methoxysalicylaldimine] has been synthesized and characterized by element analysis, FT-IR, solid UV–Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows an open-cubane tetranuclear complex. The Mn1 (Mn1i) ions is hexacoordinate by NO5 donor sets while the Mn2 (Mn2i) is pentacoordinate by NO4 donor sets. The solid state photoluminescence properties of complex 1 and its ligand H 2 L have been investigated under UV light at 349 nm in the visible region. H 2 L exhibits blue emission while complex 1 shows orange-red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex 1 in the range 2–300 K indicate an antiferromagnetic interaction.  相似文献   

13.
The reaction of tetraphenylantimony chloride with sodium perrhenate or potassium chlorate yields tetraphenylantimony perrhenate (I) and tetraphenylantimony chlorate (II), respectively. Complex I was also synthesized from pentaphenylantimony and triphenylantimony diperrhenate in toluene. According to X-ray diffraction, crystals I and II consist of almost regular tetrahedral tetraphenylstibonium cations (CSbC, 109.4(2)°–109.5(7)° in I and 109.1(1)°–109.6(1)° in II) and [ReO4]? (OreO, 107.6(3)°–113.3(5)°) and [ClO3]? (OClO, 96.3(9)°, 116.4(5)°) anions, respectively. The average Sb-C bond lengths (2.094(3) Å in I, 2.097(2) Å in II) are close to the sum of the covalent radii of the Sb and C atoms. The average distances Re-O in complex I (1.672(4) Å) and Cl-O in complex II (1.315 Å) correspond to multiple bonds.  相似文献   

14.
Two complexes, namely, triaqua(18-crown-6)strontium dibromide monohydrate (I) and diaquabromo(18-crown-6)barium bromide (II), are synthesized. Their crystal structures are determined by X-ray diffraction analyses. For complex I, space group C2/c, a = 17.547 Å, b = 10.246 Å, c = 14.786 Å, β = 123.08°, Z = 4. For complex II, space group Pnma, a = 17.753 Å, b = 17.465 Å, c = 6.629 Å, Z = 4. The structures are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.056 (I) and 0.042 (II) for 2696 (I) and 2440 (II) independent reflections (CAD-4 automated diffractometer, λMoK α radiation). Both complex cations—randomly disordered [Sr(18C6)(H2O)3]2+ in complex I and [BaBr(18C6)(H2O)2]+ in complex II—are of the host-guest type. The Sr2+ (Ba2+) cation resides in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In the structures complexes I and II, the coordination polyhedra of the Sr2+ and Ba2+ cations (coordination number 9) can be described as distorted hexagonal bipyramids with one apex at the O atom of the water molecule in complex I or at the Br? ligand in complex II and the other split apex at the O atoms of two water molecules.  相似文献   

15.
The complex salt {[CuL2][Cu4I6]?MeCN}n (1) and the compound [Cu4L3I4]?3 MeCN (2) (L is a chiral ligand bearing a natural monoterpene (+)-3-carene moiety) were synthesized. The crystal structures of compounds 1 and 2 were determined by X-ray diffraction. The structure of compound 1 consists of complex cations [CuL2]2+ (N3O2 polyhedron is a trigonal bipyramid) and CuI coordination polymers (CuI4 polyhedron is a tetrahedron) as anions. The experimental magnetic moment μeff at 300 K is 1.90 μB, which is consistent with the X-ray diffraction data and the assumption that compound 1 is mixed-valence. The structure of compound 2 comprises a tetranuclear CuI complex, in which three Cu atoms are coordinated by two N atoms of the ligand L and two I atoms, and the fourth Cu atom is coordinated by four I atoms (coordination polyhedra are distorted tetrahedra). Compounds L and 2 were found to influence the viability of human laryngeal carcinoma cells (Hep2). The IC50 value for complex 2 (13.0±1.7 μM) is substantially smaller than IC50 for compound L (30.5±0.5 μM).  相似文献   

16.
Coordination compounds [CoLCl2] (I), [CuLCl(NO3)] (II), CuL(NO3)2 (III), and CuLCl2 (IV) (where L is a chiral pyrazolylquinoline—a derivative of terpenoid (+)-3-carene) were synthesized. X-ray diffraction data showed that crystal structures I and II are built of mononuclear acentric molecules. In the molecule of complex I, the Co2+ ion coordinates two N atoms of bidentate cycle-forming ligand L and two Cl atoms. The coordination polyhedron of Cl2N2 is a distorted tetrahedron. For complex I, μeff = 4.50 μB, which corresponds to a high-spin configuration d 7. In the molecules of II(1), II(2) (which are diastereoisomers of complex II), each Cu2+ ion coordinates two N atoms of bidentate cycle-forming ligand L, the Cl atom, and two O atoms of bidentate cyclic NO 3 ? ion. The ClN2O2 coordination polyhedra are tetragonal pyramids with different degrees of distortion. The structure of complex II consists of supramolecular clusters, i.e., isolated chains incorporating the molecules of II(1) and II(2). The values of μeff for II–IV correspond to the d 9 configuration. The results of EPR and IR study suggest that complex III contains the O4N2 polyhedron, whereas complex IV contains the Cl2N2 polyhedron. Complexes I and IV were found to show a high catalytic activity in ethylene polymerization reaction.  相似文献   

17.
Complexes [CuL1Cl2] (I), [CuL2Cl2] · EtOH (II), and Cu2L3Cl4 (III) containing esters of the N-derivatives of optically active amino acids based on (+)-3-carene (L1, L2) and (?)-α-pinene (L3) are synthesized. The crystal and molecular structures of compounds I and II are determined by X-ray diffraction analyses (CIF files CCDC nos. 1560071 (I), 1560072 (II)). The crystal structure of compound I consists of mononuclear complex molecules. In the structure of compound II, the unit cell contains two crystallographically independent molecules of mononuclear complex [CuL2Cl2] and two EtOH molecules. Ligands L1 and L2 perform the tridentate-chelating function by the N atoms of the NH and NOH groups and by the O atom of the C=O group. In compounds I and II, the coordination polyhedra Cl2N2O of the Cu atoms are trigonal bipyramid. According to the data of IR and electronic spectroscopy, binuclear complex III has similar coordination polyhedra. The experimental values of μeff for compounds I, II, and III at 300 K are 1.93, 1.88, and 2.71 μB. For complex III, the μeff(T) dependence in a range of 2–300 K indicates a weak ferromagnetic exchange interaction.  相似文献   

18.
The reaction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with LiAlH4 affords two products regardless of the solvent used (tetrahydrofuran or diethyl ether). These products were isolated as green and colorless crystals. Green crystals of the complex [(dpp-bian)Al(H)2Li(THF)3] (1) were obtained from tetrahydrofuran; colorless crystals of the complex [{dpp-bian(H2)}Al(H)2Li(Et2O)2] (2), from diethyl ether. The reactions of compound 1 with 2,6-di-tert-butyl-4-methylphenol and benzophenone gave monohydrides [(dpp-bian)Al(H)(OC6H2-2,6-Bu2 t-4-Me)][Li(THF)4] (3) and [(dpp-bian)Al(H)(OCHPh2)- Li(THF)2] (4), respectively. The diamagnetic aluminum hydride [(dpp-bian)AlH(THF)] (5) was synthesized by the reaction of dichloroalane HAlCl2 (in situ) with the disodium salt of dpp-bian in THF; the paramagnetic hydride [(dpp-bian)AlH(Cl)] (6) containing the dpp-bian radical anion was synthesized by the reaction of the monosodium salt (dpp-bian)Na with monochloroalane H2AlCl (in situ) in diethyl ether. The reaction of compound 6 with tert-butyllithium gives the complex [(dpp-bian)AlBut(Et2O)] (7). Diamagnetic derivatives 1—5 and 7 were characterized by 1Н NMR spectroscopy; paramagnetic compound 6, by ESR spectroscopy. The molecular structures of compounds 1—7 were determined by single-crystal X-ray diffraction.  相似文献   

19.
The proton transfer compound (Hdap)(chelH)·2H2O (1) and its related anionic complex (Hdap) [VO2(chel)] (2), where chelH2 = 4-hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid) and dap = 3,4-diaminopyridine, were synthesized and characterized by elemental analysis, spectroscopy (IR, UV–Vis), thermal (TG/DTG) analysis and single-crystal X-ray diffraction. Compound 1 resulted from proton transfer between chelH2 and dap in aqueous solution. In 1, two carboxylic acids of chelH2 were deprotonated and the protons transferred to the nitrogen atoms of one chelidamate anion and one dap moiety. Compound 2 resulted from complexation of 1 and vanadyl sulfate. In the crystal structure of 2, the metal ion is five coordinated by one tridentate ligand (chel)2? and two O2? anions, with (Hdap)+ as a counter cation. In both structures, a complicated hydrogen-bonding network accompanied with π–π, C–O···π and C–H···π stacking interactions leads to formation of a 3D supramolecular network. In the following, solution studies have been performed by means of pH potentiometric titrations method as a power technique. This method was used for determination of protonation constants of chelH2 and dap in their probable protonated forms and for calculation of equilibrium constants for the chelH2–dap proton transfer system and the stoichiometry and stability constants of binary and ternary complexes of this system with VO2+ ion in aqueous solution. The stoichiometries of the most complex species in solution were compared with the corresponding crystalline complexes in the solid state.  相似文献   

20.
Two new 1,3-bi(4-pyridyl)propane-based cadmium(II) complexes, [Cd(Bpp)2(Nas)2] n (I) and [Cd(Bpp)2(Na)2(H2O)2] (II) (Bpp = 1,3-bi(4-pyridyl)propane, Nas = 2-aminonaphthalene-1-sulfonate, and Na = 1-naphthoate) (CIF files CCDC nos. 1429589 (I), 1429590 (II)) have been hydrothermally synthesized by varying carboxylate- or sulfonate-containing coligands. Structural analyses reveal that, complex I with monodentate Nas ligands exhibits a two-dimensional (2D) layered motif extended by equatorial Bpp connectors. By contrast, complex II modified by monodentate Na ligands exhibit discrete mononuclear structure. Althouth the Nas/Na coligands showed the same monodentate binding modes, the Bpp ligand exhibits bridging or terminal binding modes in I and II, respectively. So it is obvious that the competitive coordination in the present mixed-ligands system is responsible for the aggregation or dissociation of mononuclear structural units. Furthermore, both of the two compounds are linked to 3D supramolecular architecture by intermolecular C–H···O hydrogen bonding or C–H···π stacking interactions, exhibiting strong fluorescent emissions resulting from the ligand-to-metal or Na?-based intraligand charge transfer at room temperature, which can be hopefully used as fluorescent materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号