首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An applied fluid-dynamics model of the non-stationary flow in a long multilayer-insulated high-pressure subsea gas pipeline was developed. Instead of a complex partial differential heat conduction equation, which represents the heat flux between the flowing gas and the environment in the energy balance equation, the model uses a first-order ordinary differential equation. The applied model allows one to significantly increase the speed of numerical computation of the fluid-dynamics parameters of the gas flow in the pipeline, which is necessary for multivariate computations in design and operation of gas pipelines.  相似文献   

2.
Computational fluid dynamics (CFD) modeling of the complex processes that occur within the burner of a gas turbine engine has become a critical step in the design process. However, due to computer limitations, it is very difficult to completely couple the fluid mechanics solver with the full combustion chemistry. Therefore, simplified chemistry models are required, and the topic of this research was to provide reduced chemistry models for CH4/O2 gas turbine flow fields to be integrated into CFD codes for the simulation of flow fields of natural gas-fueled burners. The reduction procedure for the CH4/O2 model utilized a response modeling technique wherein the full mechanism was solved over a range of temperatures, pressures, and mixture ratios to establish the response of a particular variable, namely the chemical reaction time. The conditions covered were between 1000 and 2500 K for temperature, 0.1 and 2 for equivalence ratio in air, and 0.1 and 50 atm for pressure. The kinetic time models in the form of ignition time correlations are given in Arrhenius-type formulas as functions of equivaience ratio, temperature, and pressure; or fuel-to-air ratio, temperature, and pressure. A single ignition time model was obtained for the entire range of conditions, and separate models for the low-temperature and high-temperature regions as well as for fuel-lean and rich cases were also derived. Predictions using the reduced model were verified using results from the full mechanism and empirical correlations from experiments. The models are intended for (but not limited to) use in CFD codes for flow field simulations of gas turbine combustors in which initial conditions and degree of mixedness of the fuel and air are key factors in achieving stable and robust combustion processes and acceptable emission levels. The chemical time model was utilized successfully in CFD simulations of a generic gas turbine combustor with four different cases with various levels of fuel-air premixing.  相似文献   

3.
Studying processes that occur in solid electrolyte electrochemical cells when the working electrode is subjected to an impact of the reactive gas medium are of interest for both their practical application and the understanding of mechanisms of these processes. There are grounds to assume that the methods of studying the processes on electrodes by subjecting the latter to chemical pulses provide more information as compared with the conventional methods based on electric perturbations. A computer simulation of nonstationary processes in a solid electrolyte electrochemical cell of the flow-through kind is carried out. The model of these processes takes into account the transport of electrochemically active components in the gas phase, the kinetics and statics of adsorption of these substances on the gas/electrode interface, and the kinetics of electrode reactions including chemical and charge-transfer stages. Time dependences of concentration fields are calculated as well as the integral characteristics of flows, namely, the oxygen flow from the gas phase to the electrode, the oxygen flow from the electrode to the solid electrolyte, and the flow of the electrochemically active component at the cell outlet.  相似文献   

4.
We have developed a new inlet system for a gas sample isotope ratio mass spectrometer (IRMS). It is based on the well-known open split design from the gas chromatography/mass spectrometry (GC/MS) system due to its simplicity. The advantages over the conventional double inlet system with the metal bellows design include an improved reproducibility mainly due to a highly controllable pressure and temperature adjustment, a markedly lowered memory effect due to an uninterrupted gas flow through the ion source which limits adsorption/desorption processes on surfaces, and a single inlet capillary circumventing problems of asymmetrical behavior of sample and reference inlet paths. Furthermore, sample consumption is of the same order as for conventional measurements (i.e. about 0.4 mmol per hour), of which however only 2 &mgr;mol/h is used for the actual isotope ratio determination since the major gas amount acts as a gas flow seal against the atmosphere, corresponding to a 100-200 fold overkill. This may be improved in future systems. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Ion transport by viscous gas flow through capillaries   总被引:1,自引:0,他引:1  
The effects of a number of experimental parameters on the efficiency of ion transport by viscous gas flow through narrow capillaries have been studied. Both electrospray and corona ion sources were used. The experimental data are consistent with ions loss to the walls of the capillary, which initially is caused mainly by space-charge expansion, but later is caused by diffusion. These processes can result in severe discrimination against low mass ions. The extent of ion loss may be calculated by using a simple model for radial diffusional loss in long cylinders, with an exponential decay of the ion density along the transport capillary. However, such a simple model underestimates ion loss by ignoring the effects of space-charge, turbulent flow, and rapid decay of higher radial diffusion modes (enhanced loss of ions that enter the capillary close to the wall). In contrast, Monte Carlo simulations showed that the effect of the parabolic velocity profile, under laminar flow conditions, is to increase the transmitted ion current, sometimes by several orders of magnitude, relative to the predictions of the simple diffusion model. After considering all these factors, the transmitted current from a corona was well reproduced by using mobility values for ions formed in such discharges. However, the measured transmitted current from an electrospray source was much too high. To explain this, it was necessary to assume that about 2% of the electrospray current is carried by aerosol particles with radii in the 10-25-Å range. Finally, it is argued that in glass capillaries wall charging may explain why the transmitted ion current is observed to be very similar to that in metal capillaries.  相似文献   

6.
天然气与硫酸盐热化学还原反应的模拟实验研究   总被引:4,自引:1,他引:4  
为探讨天然气中高含量硫化氢形成的化学机制,利用高温高压反应装置,对天然气与固态硫酸钙反应体系进行了热模拟实验研究。使用气相色谱仪、微库仑仪、傅里叶变换红外光谱仪和X射线衍射仪对产物进行了分析,探讨了硫酸盐热化学还原反应的热力学特征,并进行了反应动力学研究。结果表明,高温下天然气与固态硫酸钙可以发生反应,产物主要为硫化氢、二氧化碳、碳酸钙、水和炭。热力学研究表明,天然气与固态硫酸钙的反应可行,升高温度对反应有利,同一温度下长链烷烃与固态硫酸钙发生反应的可能性要比短链烷烃大。根据动力学模型得到反应活化能为96.824kJ/mol。  相似文献   

7.
Towards a fundamental understanding of natural gas hydrates   总被引:2,自引:0,他引:2  
Gas clathrate hydrates were first identified in 1810 by Sir Humphrey Davy. However, it is believed that other scientists, including Priestley, may have observed their existence before this date. They are solid crystalline inclusion compounds consisting of polyhedral water cavities which enclathrate small gas molecules. Natural gas hydrates are important industrially because the occurrence of these solids in subsea gas pipelines presents high economic loss and ecological risks, as well as potential safety hazards to exploration and transmission personnel. On the other hand, they also have technological importance in separation processes, fuel transportation and storage. They are also a potential fuel resource because natural deposits of predominantly methane hydrate are found in permafrost and continental margins. To progress with understanding and tackling some of the technological challenges relating to natural gas hydrate formation, inhibition and decomposition one needs to develop a fundamental understanding of the molecular mechanisms involved in these processes. This fundamental understanding is also important to the broader field of inclusion chemistry. The present article focuses on the application of a range of physico-chemical techniques and approaches for gaining a fundamental understanding of natural gas hydrate formation, decomposition and inhibition. This article is complementary to other reviews in this field, which have focused more on the applied, engineering and technological aspects of clathrate hydrates.  相似文献   

8.
A mathematical model is developed for examining the influence of nonisothermal effects and accumulation of heavy alkanes on natural gas storage cycles. The model is solved for the charge and discharge steps of the cycle. This is the first study to solve the natural gas storage problem for a nonisothermal charge of natural gas containing impurities. We examine both adiabatic and isothermal operation of natural gas and pure methane storage cycles on BPL carbon and an activated carbon prepared from coconut shells. Our simulations show for both carbons that the adiabatic gas storage cycles operate under subcooled conditions with respect to the feed temperature due to long discharge times and the desorption heat. It is also shown that degradation of gas storage performance due to impurities depends more on selectivity of the material for heavy alkanes than on adsorption capacities.  相似文献   

9.
The effect of relative pressure on the efficiency of an open capillary column in gas chromatography was studied. It was shown that the relative pressure was not the only parameter determining the column efficiency. The pressure drop in the column is an additional parameter. At high values of relative pressure, the pressure drop in the column becomes determining for the column efficiency. The smallest value of a height equivalent to a theoretical plate (HETP) is achieved at the minimum values of the pressure drop and the relative pressure, which is accompanied by a decrease in the optimal flow rate of the carrier gas and an increase in the time of determination. The maximum improvement in the column efficiency is determined by the column properties and can exceed 12.5%, that is, the value predicted by Cramers for open capillary columns.  相似文献   

10.
Nature of flow on sweeping gas membrane distillation   总被引:5,自引:0,他引:5  
The process of sweeping gas membrane distillation (SGMD), with the liquid feed and the sweeping gas counterflowing in a plate and frame membrane module, has been studied. A theoretical model, which was presented in a previous paper and permitted to obtain the temperature profiles inside the fluid phases, has been developed in order to analyse the physical nature of the transmembrane water flux. Two porous hydrophobic membranes have been studied in different experimental conditions. The influence of some relevant parameters, such as the inlet and outlet temperatures or the circulation velocities of the fluids, has been studied. The experimental results have been analysed according to the model and the conclusion is that the water transport takes place, apparently, via a combined Knudsen and molecular diffusive flow mechanism. From the temperature profiles, a local temperature polarisation coefficient may be defined. From this local value, an overall one for the whole system is then defined. The new theoretical predictions have been applied to the obtained results and the accordance may be considered good.  相似文献   

11.
Due to dynamic nature of processes taking place during the experiment (chemical reaction and physical processes, heat flow, gas flow, etc.) the results obtained by thermal methods may considerably depend on the conditions used during the experiment. Therefore, whenever the results of thermal analysis are reported, the experimental conditions used should be stated. In this paper we have studied the heat transfer from the furnace to the sample and through the sample during dynamic mechanical analysis measurements. Numerical modelling of the heat transfer was done using an own computer program based on the heat conduction equation, solved numerically applying the finite difference methods. The calculated values of the thermal lag between the furnace and the sample were compared with the values experimentally determined on samples of a composite polymeric energetic material (double-base rocket propellant). Also, the temperature distribution within the sample as a function of the heating rate was analysed using the same numerical model. It was found out that using this model and temperature dependent heat transfer coefficient, experimentally obtained values of the thermal lag between the furnace and the sample can be satisfactory described. It was also shown that even at slow heating rates, such is, e.g. 2 °C min−1, the thermal lag between the furnace and the sample can reach several degrees, while the thermal gradient within 3-mm thick rectangular sample can reach 0.4 °C.  相似文献   

12.
Radial flow reactors (RFR) are used in thermal swing adsorption (TSA) processes for gas prepurification. The aim of this work is to show the validity of the discrete element method (DEM) to simulate the effect of thermal expansion and contraction cycles occurring in such processes on the packed bed of RFR reactors. Both mono-layered and bi-layered packed beds of adsorbents are investigated. A DEM-based model of a full-scale size unit was developed, the parameters of which were calibrated by means of particle-scale experimental measurements and simple auxiliary DEM simulations. The DEM-based model used is isothermal and the thermal expansion and contraction phenomena are modelled through the displacement of the inner and outer walls of the computational domain. First, the accuracy of this model is assessed using analytical values of the static wall pressure (i.e. with no wall motion) as well as experimental measurements of the dynamic wall pressure (i.e. with wall motion) of a bi-layered bed. Next, simulation results for a few process cycles in the case of a bi-layered packed bed indicates that little mixing occurs at the interface between the two types of adsorbents. To our knowledge, this is the first time that simulation is used to investigate the behavior of the packed bed of a RFR in a TSA process. The results obtained with the proposed model show that the DEM is a valuable tool for the investigation of such slow dynamical processes, provided a careful calibration is done.  相似文献   

13.
研制的静态水合物试验装置采用可视观察的方法,可以快速确定天然气水合物的形成条件。动态天然气水合物试验装置在利用直接观测来判断水合物形成点的同时,通过监测装置转轮的扭距、试验介质的温度、压力、流速变化,综合判断天然气水合物的形成,此装置可以很好地模拟现场实际的天然气管输工况,实验结果与理论值及实际值差别较小。  相似文献   

14.
Molla S  Eskin D  Mostowfi F 《Lab on a chip》2011,11(11):1968-1978
Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (~0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.  相似文献   

15.
With method development in one-dimensional GC already being a tedious task, developing GC x GC methods is even more laborious. The majority of the present GC x GC applications are derived from previously optimised 1D-GC methods, from which especially the carrier gas flow settings are copied. However, in view of the high pressure inside the first-dimension column (high flow resistance of the narrow-bore second-dimension column), diffusion in the first column is much slower than in 1D-GC. Proper optimisation of the column combination and the carrier gas flow can considerably improve separations in GC x GC. To assist in the process of selecting column dimensions and flow rate optimization, we have developed a computer programme, based on Excel, that enables quick and simple calculation for all types of column combinations. The programme merely needs column dimensions and carrier gas type as input parameters and calculates all resolution and velocity parameters of the GC x GC separation by using flow rate and plate height equations. From the calculations a number of interesting conclusions can be drawn. As an example, the calculations clearly show that the majority of column combinations reported up till now have been operated at a far from optimal flow -- and, consequently, a far from optimal resolution. Probably even more important is the conclusion that the majority of column combinations used so far, i.e. those with 100 microm I.D. second-dimension columns, are not necessarily the best choice for GC x GC.  相似文献   

16.
An optical emission spectroscopy method for determination of electron temperature, electron density and gas temperature is developed and applied for diagnostics of inductively-driven argon discharges in a cylindrical geometry. The discharges are maintained at frequency 27 MHz, applied power varied in the limits P = (90 – 160) W and gas pressure in the range p = (1.1 – 117.3) Pa. The method combines measurements of emission spectral line intensities and profile broadenings with a collisional-radiative model of argon plasma at low pressure. The model is employed for investigation of the plasma kinetics governing the population densities of 3p54s and 3p54p argon configuration levels, treated separately. In the numerical calculations the electron density and electron temperature are varied whereas the values of the third plasma parameter — the gas temperature — are involved as obtained data from the experiments. Comparison of the experimental results of the line-intensity ratios with those calculated by the model yields the values of the electron density and temperature. The dependence of the electron temperature, electron density and gas temperature on the discharge conditions is obtained and discussed in the study.  相似文献   

17.
The sensitivity of an FID may change when the carrier gas flow rate changes during a chromatographic run. Sample parts which are eluted at reduced FID sensitivity produce a reduced peak area, hence are discriminated as compared to other components. Sensitivity changes were studied for hydrogen as carrier gas. For the detector tested, differences in the carrier gas flow rates of 1 ml/min shifted the FID sensitivity by 1 to 5% (depending on the fuel gas supply). Thus the stability of the sensitivity is no longer ensured as soon as the carrier gas flow rate is changed manually or by an automatic programmer during an analysis. Sensitivity drifts may also occur during temperature programmed runs with a pressure regulated carrier gas supply since the gas flow through the capillary drops with increasing temperature. Such shifts in the response became noticeable as soon as relatively high carrier gas flow rates combined with long range temperature programmes were used. The typical patterns of such discriminations are shown, closing with a discussion on the possibilities for minimizing such undesired effects.  相似文献   

18.
19.
Tetrahydrofuran (THF) was selected as the substitute to study the flow behaviors and the mechanism of the hydrates blockage in pipelines. The slurrylike hydrates and slushlike hydrates are observed with the formation of hydrates in pipeline. There is a critical hydrate volume concentration of 50.6% for THF slurries and pipeline will be free of hydrate blockage while the hydrate volume concentration is lower than the critical volume concentration; otherwise, pipeline will be easy to be blocked. Fully turbulent flow occurs and friction factors tend to be constant when the velocity reaches 1.5 m/s. And then, constant values of friction factors that depend on the volume concentrations in the slurry were regressed to estimate the pressure drops of THF hydrate slurry at large mean velocity. Finally, a safe region, defined according to the critical hydrate volume concentration, was proposed for THF hydrate slurry, which may provide some insight for further studying the natural gas hydrate slurries and judge whether the pipeline can be run safely or not.  相似文献   

20.
探讨氦离子化气相色谱法测定样品中微量氧、氮含量的影响因素。采用控制变量法,对色谱柱温度、进样流量、进样管道环境及极化电压等因素对微量氧、氮测定结果的影响进行讨论和分析。结果表明,当色谱柱温度为25~45℃时,色谱柱对氧、氮吸附量最小;当进样流量不小于70 mL/min时,微量氧、氮测定结果受外界干扰最小;当极化电压为80~160 V时,氧、氮具有最佳的响应值;初次测定样品中微量氧、氮含量时,需使进样管道表面吸附的氧、氮处于饱和状态,以便获得理想的测定结果。讨论的结果可为氦离子化气相色谱法测定相关样品中微量氧、氮含量时提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号