首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用凝胶法分别制备出4.5ZnO-5.5Al2O3-90SiO2(ZAS)以及ZAS∶RE3+(RE=Eu,Tb,Ce)透明微晶玻璃。利用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光光谱仪(PL)等测试手段,研究了稀土离子掺杂浓度对ZAS微晶玻璃的结构和发光性能的影响。XRD结果表明,ZAS∶RE3+(RE=Eu,Tb,Ce)微晶玻璃包含ZnAl2O4晶相和SiO2非晶相,ZnAl2O4平均晶粒尺寸约为30 nm,稀土离子的掺杂没有显著改变原来的ZnAl2O4晶体结构。TEM结果表明,900℃时ZnAl2O4从ZAS体系中析出。PL光谱显示,Eu3+存在5D0→7F2跃迁,ZAS∶Eu3+在611 nm处发出强烈的红色光;由于Tb3+的5D4→7F5跃迁,ZAS∶Tb3+在541 nm处发出明亮的绿色光;ZAS∶Ce3+在381 nm处显示了蓝光发射,对应于Ce3+的5d→4f轨道跃迁。ZAS∶RE3+(RE=Eu,Tb,Ce)的PL发射光谱存在着浓度猝灭现象,Eu3+、Tb3+和Ce3+的最佳单掺杂摩尔分数分别为20%、20%和3%。CIE色度图表明,ZAS∶RE3+(RE=Eu,Tb,Ce)的色坐标分别位于红光、绿光和蓝光区域。实验结果表明,ZAS∶RE3+(RE=Eu,Tb,Ce)微晶玻璃是一种良好的可用于全色显示的白光LED材料。  相似文献   

2.
采用凝胶法分别制备出4.5ZnO-5.5Al2 O3-90SiO2 (ZAS)以及ZAS∶ RE3+(RE=Eu,Tb,Ce)透明微晶玻璃.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光光谱仪(PL)等测试手段,研究了稀土离子掺杂浓度对ZAS微晶玻璃的结构和发光性能的影响.XRD结果表明,ZAS∶ RE3+(RE=Eu,Tb,Ce)微晶玻璃包含ZnAl2 O4晶相和SiO2非晶相,ZnAl2 O4平均晶粒尺寸约为30 nm,稀土离子的掺杂没有显著改变原来的ZnAl2O4晶体结构.TEM结果表明,900℃时ZnAl2O4从ZAS体系中析出.PL光谱显示,Eu3+存在5 D0→7F2跃迁,ZAS∶Eu3+在611 nm处发出强烈的红色光;由于Tb3+的5D4→7E跃迁,ZAS∶ Tb3+在541 nm处发出明亮的绿色光;ZAS∶ Ce3+在381 nm处显示了蓝光发射,对应于Ce3的5d→4f轨道跃迁.ZAS∶RE3+(RE =Eu,Tb,Ce)的PL发射光谱存在着浓度猝灭现象,Eu3+、Tb3+和Ce3+的最佳单掺杂摩尔分数分别为20%、20%和3%.CIE色度图表明,ZAS∶ RE3+(RE=Eu,Tb,Ce)的色坐标分别位于红光、绿光和蓝光区域.实验结果表明,ZAS∶RE3+(RE=Eu,Tb,Ce)微晶玻璃是一种良好的可用于全色显示的白光LED材料.  相似文献   

3.
采用高温固相法合成了用于紫外芯片(UVLED)激发的绿色荧光粉Ca2SrAl2O6:Ce3+,Tb3+。测量了其激发光谱和发射光谱,结果显示,材料的发射谱由峰值位于497,545,595和623nm的4组窄带组成,其中位于545nm的发射峰最强,样品能发射很好的绿光;监测545nm发射峰,得到的激发谱由位于320~400nm之间的激发带组成,能被UVLED很好地激发。研究了Ca2SrAl2O6荧光粉中Ce3+对Tb3+发光的敏化现象,发光的敏化作用缘于Ce3+和Tb3+之间的高效无辐射能量传递。共掺激活剂的最佳掺杂浓度为4mol%。  相似文献   

4.
采用高温固相法合成了Ca2SnO4∶Tb3+绿色荧光粉。利用X射线衍射分析了Ca2SnO4∶Tb3+物相的形成。测量了Ca2SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移。发射光谱由四个主要发射峰组成,峰值分别位于491,543,588和623nm处,Tb3+以5 D4—7 F5(543nm)跃迁发射最强,低掺杂浓度下,Tb3+的7 F6能级出现斯托克劈裂,劈裂峰(481nm处)随Tb3+浓度增加,先增强然后减弱;在发光强度方面,随Tb3+浓度的增大呈现先增大后减小的趋势,当Tb3+摩尔浓度为9%时,发光强度最大,根据Dexter理论,确定了在Ca2SnO4基质中Tb3+自身浓度猝灭机理。荧光寿命测试表明Tb3+在Ca2SnO4基质中荧光衰减平均寿命为4.4ms。  相似文献   

5.
采用高温固相法合成了Ca2 SnO4∶Tb3+绿色荧光粉.利用X射线衍射分析了Ca2 SnO4∶Tb3+物相的形成.测量了Ca2 SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移.发射光谱由四个主要发射峰组成,峰值分别位于491,543,588和623 nm处,Tb3+以5 D4-7 F5(543 nm)跃迁发射最强,低掺杂浓度下,Tb3+的7 F6能级出现斯托克劈裂,劈裂峰(481 nm处)随Tb3+浓度增加,先增强然后减弱;在发光强度方面,随Tb3+浓度的增大呈现先增大后减小的趋势,当Tb3+摩尔浓度为9%时,发光强度最大,根据Dexter理论,确定了在Ca2 SnO4基质中Tb3+自身浓度猝灭机理.荧光寿命测试表明Tb3+在Ca2 SnO4基质中荧光衰减平均寿命为4.4 ms.  相似文献   

6.
采用高温固相法成功地合成了新型高效绿色荧光粉(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+。通过XRD和荧光光谱等对其结构及发光性能进行了系统研究。结果表明:新合成的(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+与典型的商用绿粉(Ce0.67Tb0.33)MgAl11O19(CMAT)具有相同的晶体结构;激发光谱处于237~326 nm范围内,由一个峰位位于291 nm的宽激发带组成,这是典型的Ce3+的特征激发;在紫外光激发下,该荧光粉除了在490,541,590,620 nm存在Tb3+的特征发射峰外,还在516 nm出现了一个较强的归属于Mn2+的4T1g(G)→6A1g(S)电子跃迁的宽发射峰。Mn2+作为共激活剂增大了该荧光材料在绿色区域的发射面积,其中(Ce0.67Tb0.33)Mg0.850Al11O19∶0.150Mn2+荧光粉发射光谱的积分面积最大,为CMAT的226%,其CIE坐标为(0.194,0.695),比CMAT(0.288,0.572)更加接近NTSC标准值(0.21,0.71),即Mn2+的引入不但提高了荧光粉的发光效率,而且改善了其色纯度。结果表明新型(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+绿色荧光粉比传统的CMAT在显示领域具有更好的潜在应用前景。  相似文献   

7.
合成了两种新的配合物{[Eu3(bidc)4(phen)2(NO3)]·2H2O}n(1)和[Tb2(bidc)3(H2O)2](2)(bidc=苯并咪唑二羧酸根,phen=1,10-邻菲啰啉)。配合物1是链状结构,含有三种不同的金属离子配位环境:Eu(1)O6N2,Eu(2)O8和Eu(3)O6N2。配合物2是二维网状结构,含有两种配位环境相似的金属离子:Tb(1)O8和Tb(2)O8。配合物1在581,593,615,654和702nm处出现发射峰,为Eu3+的5 D0→7 FJ(J=0-4)跃迁产生的特征荧光。最强发射峰位于615nm,对应于5 D0→7 F2跃迁,为红光。跃迁强度I(5 D0→7 F2)∶I(5 D0→7 F1)约为2.5,说明Eu3+不处于反演中心。配合物2在490,545,584和622nm出现发射峰,归属为中心Tb3+的5 D4→7 FJ(J=6-3)跃迁产生的特征荧光。在545nm的发射最强,对应于5 D4→7 F5跃迁,为绿光。探讨了不同溶剂对配合物1和2荧光的影响。实验结果表明硝基苯对配合物1和2具有显著的荧光猝灭作用,因此配合物1和2可用于环境污染物硝基苯的检测。  相似文献   

8.
采用高温固相法合成了Tb3+、Yb3+共掺杂的BaGd2ZnO5荧光粉。XRD测量数据表明合成的样品为纯相。在Tb3+特征激发(297 nm)下得到了Yb3+的特征发射(977 nm),并且对Tb3+与Yb3+能级图进行分析,证明Tb3+到Yb3+为合作能量传递。测量了不同Yb3+浓度下Tb3+的5D4能级(544 nm)的发光寿命曲线,计算得到Tb3+与Yb3+的能量传递效率和量子效率,最高量子效率为125.5%。Yb3+的发射与硅太阳能电池的吸收匹配,该材料有可能应用于硅太阳能电池以提高其转换效率。  相似文献   

9.
韩丽  宋超  刘桂霞  王进贤  董相廷 《发光学报》2013,34(10):1288-1294
采用水热法制备了Ca0.8La0.2-x-y MoO4∶xTb3+,yEu3+荧光材料,并对其结构和发光性能进行了研究。X射线衍射(XRD)分析表明,合成的样品为四方晶系的CaMoO4白钨矿结构,稀土离子La3+、Eu3+、Tb3+的引入不会改变主晶格的结构。荧光光谱表明,与CaMoO4∶Eu3+荧光粉相比,基质中掺杂La后的Ca0.8La0.15MoO4∶0.05Eu3+样品的616 nm(5D0→7F2)处的特征发射峰明显增强。在285 nm紫外光激发下,Ca0.8La0.16-y MoO4∶0.04Tb3+,yEu3+(y=0.01,0.03,0.05,0.07)系列样品在545 nm和616 nm处出现的发射峰,分别对应于Tb3+的5D4→7F5跃迁和Eu3+的5D0→7F2跃迁,并且随着Eu3+掺杂量的增加,Tb3+的发射峰逐渐减弱,Eu3+的发射峰逐渐增强,表明该荧光材料中存在着由Tb3+到Eu3+能量传递。随着Ca0.8La0.16-y MoO4∶0.04Tb3+,yEu3+(y=0.01,0.03,0.05,0.07)系列样品中激活剂Eu3+掺杂量的增加,荧光粉实现了从绿色→黄绿→黄色→红色的颜色可调。  相似文献   

10.
采用高温固相法合成了Ba3Tb(BO3)3和Ba3Tb(BO3)3:Ce3+两种绿色荧光粉,并研究了材料的发光性质.Ba3Tb(BO3)2材料呈多峰发射,发射峰位于439,493,547,589和629 nm,分别对应Tb3+的5D3→7F4和5D4→7F1=6,5,4,3跃迁发射,主峰为547 nm;监测547 nm发射峰,所得激发光谱由4f75d1宽带吸收(200-330 nm)和4f4f电子吸收(330-400 nm)组成,主峰为380 nm.以Ce3+激活Ba3Tb(BO3)3,所得Ba3Tb(BO3)3:Ce3+与Ba3Tb(BO3),材料的发射光谱分布相同,但发射强度明显增强,说明Ce3+对Tb3+产生了很好的敏化作用;监测547 nm最强发射峰,所得激发光谱为宽带,主峰位于360 nm.改变H3BO3量,Ba3Tb(BO3)3:Ce3+材料的发射强度随之变化,当H3BO3过量15 wt%时,发射强度最大.上述研究结果表明Ba3Tb(BO3)3:Ce3+是一种很好的适于UV-LED管芯激发的白光LED用绿色荧光粉.  相似文献   

11.
采用高温固相法合成了LiSrPO4:Tb3+发光材料,测定了荧光粉的激发光谱和发射光谱,该荧光粉的激发主峰位于330~390nm,属于4f→4f电子跃迁吸收,与UVLED管芯相匹配。在紫外激发下的发射峰由位于490nm(5D4-7F6)、545nm(5D4-7F5)、585nm(5D4-7F4)、622nm(5D4-7F3)的四组线状峰构成,对应Tb3+的特征跃迁,其中545nm处最强,呈现绿色发光。考察了掺杂离子浓度对样品发光效率的影响,Tb3+的最佳掺杂摩尔分数为9%,分析了其自身浓度猝灭机理,探讨了敏化剂Ce3+离子的加入对荧光粉发光强度的影响。LiSrPO4:Tb3+是一种适用于白光LED的绿色荧光材料。  相似文献   

12.
采用液相沉淀法合成了SrWO4:Eu,Tb发光材料,XRD衍射测试结果表明,合成材料均具有四方晶系结构.荧光光谱检测表明,在254nm紫外光激发下,SrWO4;0.05Eu的发射光谱出现Eu3+的5D0→7F1(598nm)、5D0→7F2(618nm)跃迁发光峰,SrWO4:0.05Eu,0.05Tb的发射光谱只出现Eu3+的发光峰,说明存在Tb3+,Eu3+离子间的能量传递现象,Tb3+离子的共掺杂能够显著提高Eu3+离子的发光性能.  相似文献   

13.
采用高温固相法合成了CaSnO3∶Tb3+绿色长余辉荧光粉。利用X射线衍射分析了CaSnO3∶Tb3+物相结构。研究了Tb3+浓度对样品发光强度的影响,结果显示:随Tb3+浓度的增大,发射光谱强度先增大后减小,出现了浓度猝灭效应,Tb3+的最佳摩尔分数为0.3%。发射光谱由4个主要发射峰组成,峰中心分别位于492,546,588,623 nm处,以Tb3+的5D4→7F5(546 nm)跃迁发射为最强。对样品的温度特性进行了测量,通过对数据进行拟合得到样品的激活能为0.58 eV,陷阱深度为0.622 eV。最后,给出了CaSnO3∶Tb3+绿色长余辉荧光粉可能的余辉发光机理。  相似文献   

14.
通过化学共沉淀法制备了适合近紫外激发的SrZn1-x(WO4)2∶xTb3+∶yCe3+系列绿色荧光粉。利用X射线衍射(XRD)分析了不同掺杂比例对样品物相的影响。采用荧光光谱(PL)对样品的激发光谱和发射光谱进行了表征。分别讨论了稀土Tb3+单掺及Ce3+和Tb3+共掺对样品发光性能的影响。XRD分析表明:样品的主衍射峰与标准卡片(JCPDS 08-0490和JCPDS 15-0774)的衍射峰基本一致,说明单掺和共掺稀土离子均未改变基质晶格结构。在样品的激发光谱中,223nm为主激发峰,属于Tb3+的7F—7 D自旋允许跃迁。在223nm的紫外光激发下,样品发射光谱主发射峰位置在543nm,归属于Tb3+的5 D4→7 F5跃迁。当Ce3+和Tb3+共掺时,峰型和位置变化不大,Ce3+和Tb3+掺杂摩尔分数比为0.02∶0.06时,发光强度得到很大提高,说明Ce3+和Tb3+之间存在着能量传递。  相似文献   

15.
采用微乳液法、油酸辅助溶剂热法、超声波辅助溶剂热法分别合成了LaCeF_3∶Tb微晶。使用超声波辅助溶剂热法合成LaCeF_3∶Tb微晶鲜有报道。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、荧光光谱(PL)等方法对样品的晶相、形貌和发光性能进行了表征。XRD结果表明产物结晶良好,微晶与标准卡片PDF#38-0452(六方相LaCeF_3)对应;SEM图像显示产物形貌、尺寸均一;在250nm光的激发下,纳米粒子发出强绿色光,主要发射峰分别归属于Tb~(3+)的5 D4→7 F_6(489nm),~5D_4→~7F_5(543nm),~5D_4→~7F_4(585nm)和~5D_4→~7F_3(621nm)跃迁。通过对LaCeF_3和LaCeF_3∶Tb光谱的研究证明了Ce→Tb能量传递的存在。计算了Tb在不同方法合成的LaCeF_3微晶中的临界掺杂浓度。  相似文献   

16.
张莉  邱克辉  鲁雪光  赵昆  尚进 《发光学报》2012,33(11):1219-1223
采用高温固相法合成了(Sr1-x-yBax)3Al2O6∶3yEu2+红色荧光材料,通过XRD、荧光光谱和热稳定性测试分析,分别研究了Eu2+、Ba2+掺杂对样品的晶体结构、发光性能和热稳定性的影响。XRD测试结果表明,在1 200℃保温3 h条件下合成了具有立方晶体结构、空间群为Pa3的Sr3Al2O6纯相样品,Eu2+、Ba2+的掺入并没有改变其基质晶格的结构类型。荧光光谱分析表明,Eu2+的摩尔分数为4%时,(Sr0.98-yBa0.02)3Al2O6∶3yEu2+样品的发射峰最强,Ba2+的掺入使样品的发射峰发生红移而发射强度降低,且随Ba2+浓度的增加红移越发明显。此外,Ba2+的掺杂提高了Sr3Al2O6∶Eu2+样品的热稳定性。  相似文献   

17.
采用微乳液-水热法合成一系列NaLa(MoO4)2∶Eu3+/Tb3+/Tm3+单/共掺的荧光粉(NLM)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、荧光光谱对荧光粉的晶体结构、形貌特征和发光性质进行了测试和研究。结果表明:所制备的样品均为四方晶系单晶,Eu3+,Tb3+,Tm3+均以取代的方式进入La3+的格位;样品的形貌为四方片状结构,颗粒尺寸1~1.5μm;当Eu3+掺杂浓度为是9%时,NLM∶9%Eu3+荧光粉在616nm发射峰是最强的,此时在NLM基质中Eu3+之间的临界传递距离(Rc)约为15.20。在NLM∶9%Eu3+的发射光谱中,591nm处的发射峰为Eu3+的5 D0→7 F1的磁偶极跃迁;616nm处的发射峰为Eu3+的5 D0→7 F2的电偶极跃迁,电偶极跃迁发射强度约是磁偶极跃迁强度的10倍,表明Eu3+位于无反演对称中心格位。采用固定Eu3+(Tb3+)的浓度,改变Tb3+(Eu3+)浓度的方法,研究了Eu3+与Tb3+之间的能量传递机理。通过调节Eu3+,Tb3+和Tm3+的掺杂浓度,实现在单一基质条件下可见光区域的光色调节,在360nm激发下NLM∶x%Eu3+,y%Tb3+,z%Tm3+荧光粉的发光由蓝光(0.205,0.135)调到伪白光(0.305,0.266)。  相似文献   

18.
以4-氟苯甲酸(4-FBA)、4-氯苯甲酸(4-ClBA)为配体制备了具有良好热稳定性的稀土配合物Tb(4-FBA)3·2H2O和Tb(4-ClBA)3·2H2O,与前期工作中合成的Tb(4-BrBA)3的紫外及荧光光谱进行了分析比较。紫外-可见光吸收光谱表明,相同浓度下,3种配合物的紫外吸收能力以Tb(4-FBA)3·2H2O、Tb(4-ClBA)3·2H2O、Tb(4-BrBA)3顺序依次增大。液体荧光光谱表明,Tb(4-ClBA)3·2H2O的荧光发射强度最强。从配体的能级、配合物的紫外吸收能力及能量传递过程中的热振动损耗等方面对实验结果进行了讨论分析。热重分析表明,Tb(4-FBA)3·2H2O和Tb(4-ClBA)3·2H2O在450℃出现快速分解。将2种配合物放置于马弗炉中350℃加热1 h后,发现Tb(4-FBA)3·2H2O的荧光发射强度降低了24%,Tb(4-ClBA)3·2H2O荧光发射强度仅降低了13%左右,表明2种配合物高温条件下分子结构保持稳定,加热后2种配合物的红外光谱也表明2种配合物在高温条件下未发生分解。  相似文献   

19.
Ce~(3+)、Tb~(3+)在SrZnP_2O_7材料中的发光及能量传递   总被引:2,自引:2,他引:0       下载免费PDF全文
采用高温固相法制备了Ce3+、Tb3+激活的SrZnP2O7材料,并研究了材料的发光性质。在290 nm紫外光激发下,SrZnP2O7∶Ce3+材料的发射光谱为双峰宽谱,主峰位于329 nm。SrZnP2O7∶Tb3+材料的发射光谱由420,443,491,545,587,625 nm六个峰组成,分别对应Tb3+的5D3→7F5、5D3→7F4、5D4→7F6、5D4→7F5、5D4→7F4和5D4→7F3特征发射;监测545 nm最强发射峰,所得激发光谱覆盖200~400 nm,主峰为380 nm。研究了Ce3+、Tb3+在SrZnP2O7材料中的能量传递过程,发现,Ce3+对Tb3+具有很强的敏化作用,提高了SrZnP2O7∶Tb3+材料的发射强度,当Ce3+摩尔分数为3%时,SrZnP2O7∶Tb3+材料的发射强度提高了近2倍。引入电荷补偿剂可提高SrZnP2O7∶Tb3+材料的发射强度,其中以掺入Li+和Cl-时效果最明显。  相似文献   

20.
采用高温固相法在1 400℃下合成了近紫外光激发的单一基质白光荧光粉Ca3Y2-xSi3O12∶xDy3+。XRD检测结果显示,合成的荧光粉主晶相为Ca3Y2Si3O12。荧光光谱分析结果表明:Ca3Y2-xSi3O12∶xDy3+硅酸盐荧光粉可以被348 nm的近紫外光激发,产生白光发射,两个主发射峰位于481 nm(4F9/2→6H15/2)和572 nm(4F9/2→6H13/2)。用481 nm最强峰监测,得到主激发峰位于348 nm的激发光谱,该光谱覆盖了300~450 nm的波长范围。研究了Dy3+离子掺杂浓度及助熔剂H3BO3对荧光粉发光特性的影响,Dy3+离子的最佳掺杂量x(Dy3+)为5%,助熔剂的最佳质量分数为2%。色坐标分析显示:荧光粉的色坐标随着掺杂离子浓度及助熔剂加入量改变而发生变化。x(Dy3+)为5%且H3BO3的质量分数为2%的样品的色坐标为(0.29,0.33),位于标准白光点的色坐标范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号