首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相还原反应合成了新型单相荧光粉Ca9Na Zn(PO4)7∶Ce3+,Mn2+,并对Ce、Mn单、双掺荧光粉的发光性能和能量传递进行分析。在303 nm紫外光激发下,Ce3+,Mn2+双掺体系发射光谱中位于374 nm和650 nm两处的宽带发射峰分别来自于Ce3+的5d→4f和Mn2+的4T1(4G)→6A1(6S)能级跃迁。在该体系中,发现Ce3+和Mn2+之间存在有效能量传递,使得Mn2+的红光发射强度明显增强,能量传递的临界距离Rc=13.85?(1?=0.1 nm),并被证实属于偶极子-四极子共振能量传递。最终,从CIE色度坐标可以看出,通过对共掺离子浓度相对大小的调节可实现从蓝紫光到红光的颜色调控。  相似文献   

2.
陈鸿  李晨霞  华有杰  徐时清 《发光学报》2013,34(10):1324-1327
采用高温固相法制备了一种新型的白光LED用Ca3Si2O4N2∶Eu2+,Ce3+,K+荧光粉。利用X射线衍射仪对样品的物相结构进行了分析,结果表明:Ce3+和K+离子的掺杂没有改变Ca3Si2O4N2∶Eu2+荧光粉的主晶相。利用荧光光谱仪对样品的发光性能进行了测试,发现样品在355 nm激发下得到的发射光谱为峰值位于505 nm的单峰,是Eu2+离子5d-4f电子跃迁引起的。Ca3Si2O4N2∶Eu2+荧光粉通过Ce3+和K+离子的掺杂,发光明显增强。当Ce3+的摩尔分数为1%时,荧光粉的发光强度达到最大值,是单掺Eu2+离子荧光粉发光强度的168%。通过光谱重叠的方法计算Ce3+→Eu2+能量传递临界的距离为2.535 nm。  相似文献   

3.
采用传统的高温固相法合成了一种新型的绿色荧光粉Sr3Y(PO4)3∶Ce3+,Tb3+,利用X射线衍射(XRD)和荧光光谱(PL)对该材料的晶体结构和光学性能进行表征。结果分析表明,制得样品的XRD图谱不含Sr3Y(PO4)3以外的杂峰,稀土掺杂并未改变基质的晶体结构,得到的样品为纯相的磷酸钇锶。从本文实验中明显观察到Sr3Y(PO4)3∶Tb3+的激发光谱和Ce3+的发射光谱在320~390nm有重叠,表明在Sr3Y(PO4)3基质中可存在从Ce3+到Tb3+的能量传递。在紫外光(315nm)激发下该荧光粉发射出了Ce3+的蓝光(320~420nm)和Tb3+的黄绿光(480~500nm)和(530~560nm),当Ce3+的浓度为7%,Tb3+的浓度由1%增大到50%时,通过Ce3+的4f→5d电子跃迁将能量传递到Tb3+,然后发生5 D4→7 Fj电子跃迁,该荧光粉发射光谱可由蓝光逐渐调节为黄绿光。本文绘制了Ce3+,Tb3+的能级和Sr3Y(PO4)3∶Ce3+,Tb3+荧光粉中的能量转移过程示意图,并详细阐述了由Ce3+到Tb3+的能量传递过程。通过对比Ce3+和Tb3+的发光强度以及由Ce3+到Tb3+能量转移效率的相对变化,可以得出,随着掺入的Tb3+浓度不断增加,Tb3+的发射强度(5 D4→7 Fj)和能量转移效率(Ce3+到Tb3+)也在增大,而Ce3+的发射强度却有了明显的下降。当Tb3+的浓度为50%时能量转移效率可高达80%。通过CIE色度图也可以看出,当Tb3+浓度不断增大,样品的色坐标从图中的蓝色区域移动到绿色区域。所以在紫外光激发下,Ce3+和Tb3+共掺Sr3Y(PO4)3可作为一种绿光荧光粉应用在白光LED或LCD背光源上。  相似文献   

4.
邓超  林利添  汤利  陈东菊  孟建新 《发光学报》2015,36(11):1246-1251
采用高温固相法在1 000℃下煅烧6 h合成了Sc VO4∶Eu3+,Bi3+,Al3+荧光粉。使用X射线粉末衍射仪和扫描电镜对样品的结构和形貌进行了表征,采用荧光分光光度计研究了样品的发光性质。用315 nm波长激发Sc VO4∶Eu3+,Bi3+,Al3+样品时,样品在590~620 nm范围内发射强烈的橙红光,最大发射峰位于615nm。少量Al3+的掺入可以增强Sc VO4∶Eu3+,Bi3+荧光粉的发光,而掺入过量Al3+时会使Sc VO4∶Eu3+,Bi3+荧光粉的发光变弱。当Al3+在Sc VO4∶Eu3+,Bi3+中的摩尔分数达到4%时,样品的发光最强且其发光强度较未掺杂Al3+的样品提高了约30%。  相似文献   

5.
天然方柱石是一种典型的硅酸盐类的发光矿石,针对天然高发光效率方柱石的生成条件及化学成份,采用高温固相法在1 100℃弱还原气氛下合成了Na4Ca4Al6Si9O24(方柱石),并合成了一系列掺杂Ce3+,Tb3+的荧光粉,对其晶体结构做了讨论。通过分别对单掺Ce3+,Tb3+和共掺Ce3+,Tb3+样品发光性质的研究,发现共掺杂的样品其在545nm处由于Tb3+的5 D+4→7 F5跃迁发光强度远远大于单掺Tb3的样品。最后通过掺杂不同浓度Ce3+样品发光性质的研究,以及其荧光寿命和能量传递机理分析,结果表明随着Ce3+掺杂浓度的变化,样品的Tb3+的5 D7 4→F5跃迁(545nm)发光强度及寿命也随着变化,并发现Ce3+对Tb3+存在能量传递,且当Ce3+和Tb3+的质比为0.02∶0.03时能量传递效率最高。通过色坐标的测量,发现随着Ce3+浓度的改变,样品的发光可在绿色区域进行调节。因此,认为Na4Ca4Al6Si9O24∶Ce3+,Tb3+荧光粉有望成为新型白光LED荧光粉。  相似文献   

6.
周济  唐明道  罗晞 《发光学报》1988,9(2):152-158
研究了Ce3+,Mn2+激活的氟磷酸钙(FAP:Ce3+,Mn2+)的发光光谱、激发光谱、漫反射光谱、发光衰减以及顺磁共振谱,首次发现了FAP:Ce3+,Mn2+中Ce3+可以形成两种发光中心;同时也发现在该材料中Mn3+的发光中心与普通卤粉相似,即存在MnⅠ和MnⅡ两种中心;研究表明,由Ce3+中心向Mn2+中心的能量传递具有相当高的效率,传递机制属偶极子-偶极子相互作用;在Ce3+→Mn2+能量传递过程中,MnⅠ中心优先被Ce3+中心敏化。  相似文献   

7.
研究了ZnS粉末材料中Mn2+中心和Sm3+中心之间的相互作用.通过测量单独由Mn2+或Sm3+掺杂及Mn2+,Sm3+同时掺杂的ZnS粉末材料的发射光谱、激发光谱、发光衰减以及选择激发发光光谱,证实了Mn2+和Sm3+之间存在偶极子-偶极子相互作用的无辐射能量传递.同时还计算了能量传递几率和传递效率.  相似文献   

8.
在YAG∶Ce3+荧光粉中加入黄色PbO,得到YAG∶Ce3+,Pb2+荧光粉。比较了PbO掺入前后荧光粉的发射光谱,结果表明:PbO的加入可以使Ce3+的黄光发射发生红移,增加了光谱的红光成分;同时,Ce3+的发射强度也有所增加,形貌表明PbO可能起助熔作用,在PbO的含量为5%时,强度增加10%。比较YAG∶Ce3+,Pb2+和YAG∶Ce3+的温度特性曲线,证明YAG∶Ce3+,Pb2+荧光粉的温度特性好于YAG∶Ce3+荧光粉。  相似文献   

9.
采用共沉淀法分别制备了Eu3+、Sm3+单掺和共掺Gd2(WO4)3纳米发光材料,对所制备的纳米发光材料的结构和发光特性进行了研究。结果表明:所得样品为Gd2(WO4)3的底心单斜结构,Eu3+的摩尔分数为20%时,Gd2(WO4)3∶20%Eu3+的发光最强。Sm3+对Eu3+有敏化作用,使Eu3+的5D0→7F2发射明显增强。用464 nm的光激发时,Sm3+对Eu3+的敏化作用强于用395 nm的光激发。Sm3+的摩尔分数为5%时,样品Gd2(WO4)3∶20%Eu3+,5%Sm3+的5D0→7F2发射强度最大。Sm3+的掺入使监测Eu3+的5D0→7F2跃迁的激发光谱强度明显增大,且拓宽了可被LED有效激发的波长范围。在405 nm和440 nm波长的光激发下,也可以明显观察到样品Gd2(WO4)3∶20%Eu3+,5%Sm3+中Eu3+的5D0→7F2跃迁。  相似文献   

10.
高温固相法合成了Ce3+,Mn2+共掺的Mg2Y8Si6O26荧光粉,利用X射线粉末衍射仪(XRD)、荧光分光光度计对其结构和发光性能进行了研究。表明样品为纯相的Mg2Y8Si6O26晶体,属于六方晶系,空间群为P63/m。光谱数据表明Ce3+在该晶体中占有两种不同格位,分别为C3格位和C1h格位,通过激发和发射光谱对Ce3+在两种格位的发光进行了研究。在286nm光激发下Ce3+,Mn2+共激活Mg2Y8Si6O26的发射光谱除了在400nm有Ce3+的特征发射外,还在600nm处出现了Mn2+的特征发射,表明Ce3+和Mn2+之间存在能量传递。通过改变Mn2+的浓度实现了白光发射,它可用于紫外光激发的单一基质白光发射荧光粉。  相似文献   

11.
通过在YAG:Ce3+和YAG:Ce3+,pr3+荧光粉体系中分别掺入Cr3+离子来提高蓝光管芯白光LED的显色指数.Cr3+离子的加入,增加了红光发射,这归因于Cr3+的2E-4 A2跃迁的零声子线和声子边带发光.Ce3+→Cr3+的能量传递是增强红光发射的重要方式,在YAG:Ce3+,Cr3+体系中,由发射光谱得到...  相似文献   

12.
Ce~(3+)、Tb~(3+)在SrZnP_2O_7材料中的发光及能量传递   总被引:2,自引:2,他引:0       下载免费PDF全文
采用高温固相法制备了Ce3+、Tb3+激活的SrZnP2O7材料,并研究了材料的发光性质。在290 nm紫外光激发下,SrZnP2O7∶Ce3+材料的发射光谱为双峰宽谱,主峰位于329 nm。SrZnP2O7∶Tb3+材料的发射光谱由420,443,491,545,587,625 nm六个峰组成,分别对应Tb3+的5D3→7F5、5D3→7F4、5D4→7F6、5D4→7F5、5D4→7F4和5D4→7F3特征发射;监测545 nm最强发射峰,所得激发光谱覆盖200~400 nm,主峰为380 nm。研究了Ce3+、Tb3+在SrZnP2O7材料中的能量传递过程,发现,Ce3+对Tb3+具有很强的敏化作用,提高了SrZnP2O7∶Tb3+材料的发射强度,当Ce3+摩尔分数为3%时,SrZnP2O7∶Tb3+材料的发射强度提高了近2倍。引入电荷补偿剂可提高SrZnP2O7∶Tb3+材料的发射强度,其中以掺入Li+和Cl-时效果最明显。  相似文献   

13.
制备了一种新型的Eu2+/Sm3+共掺硅酸盐玻璃,研究了Eu2+/Sm3+共掺硅酸盐玻璃的热稳定性能和发光特性。研究发现,在近紫外光360 nm激发下,在室温下同时观察到明显的蓝绿光(475 nm)、黄光(562 nm)、橙光(599 nm)和红光(644 nm和706 nm)发光。其中蓝绿光(475 nm)是由于Eu2+的4f65d1→4f7辐射跃迁,黄光(562 nm)是由于Sm3+的4G5/2→6H5/2辐射跃迁,橙光(599 nm)是由于Sm3+的4G5/2→6H7/2辐射跃迁,红光(644 nm和706 nm)是由于Sm3+的4G5/2→6H9/2和4G5/2→6H11/2辐射跃迁。随着Sm3+离子浓度的增加,Eu2+/Sm3+共掺硅酸盐玻璃的色度从蓝绿光区域逐渐向白光区域移动。当Eu2+,Sm3+掺杂摩尔分数分别为0.05%和1.0%时,硅酸盐玻璃的色坐标为(0.312,0.307),接近纯白色点的色坐标(0.333,0.333)。研究结果表明,Eu2+/Sm3+掺杂硅酸盐玻璃是一种潜在的白光LED基质材料。  相似文献   

14.
采用高温固相法合成了用于紫外芯片(UVLED)激发的绿色荧光粉Ca2SrAl2O6:Ce3+,Tb3+。测量了其激发光谱和发射光谱,结果显示,材料的发射谱由峰值位于497,545,595和623nm的4组窄带组成,其中位于545nm的发射峰最强,样品能发射很好的绿光;监测545nm发射峰,得到的激发谱由位于320~400nm之间的激发带组成,能被UVLED很好地激发。研究了Ca2SrAl2O6荧光粉中Ce3+对Tb3+发光的敏化现象,发光的敏化作用缘于Ce3+和Tb3+之间的高效无辐射能量传递。共掺激活剂的最佳掺杂浓度为4mol%。  相似文献   

15.
采用高温固相法合成Sr3B2O6∶Eu3+,Li+红色荧光粉,考察了激活剂Eu3+和电荷补偿剂Li+浓度对Sr3B2O6∶Eu3+,Li+荧光粉发光性能的影响。结果表明:适量掺杂Eu3+、Li+离子并不改变Sr3B2O6的结构。当Eu3+掺杂量为4%、Li+的掺杂量为8%时,在900℃下灼烧2 h可以得到发光性能最佳的Sr2.9B2O6∶0.04Eu3+,0.08Li+红色荧光粉。以394 nm的近紫外光激发时,Sr3B2O6∶Eu3+,Li+荧光粉发射出红光,对应于Eu3+的4f-4f跃迁,其中以614 nm附近的5D0→7F2跃迁发光最强,是一种有潜力用于白光LED的红色荧光粉。  相似文献   

16.
采用高温固相法制备了BaAl2Si2O8∶Tb3+,Ce3+系列的荧光材料,讨论了Tb3+,Ce3+单掺及Tb3+,Ce3+共掺样品的光谱性质及发光机理,分析了Ce3+与Tb3+之间的能量传递过程.通过对样品进行XRD,荧光光谱,色坐标等测试.结果表明,Tb3+,Ce3+的掺杂没有改变BaAl2Si2O8晶体的结构.BaAl2Si2O8∶Tb3+发出明亮的绿光,发光峰分别位于487,545,583和621 nm对应于Tb3+的5D4→7FJ(J=6,5,4,3)特征发射.Ce3+的掺入没有改变BaAl2Si2O8∶Tb3+发射光谱的位置,但使其激发谱由窄带激发变成了宽带激发增加了谱带多样性,发光强度有了明显的增强,而且颜色也具有一定的协调性,使其在实际运用方面具有更大的灵活性.发光强度增强的原因不仅仅是因为Ce3+的敏化作用,还与Ce3+和Tb3+之间存在能量传递有密切关系.通过猝灭法计算了,Ce3+与Tb3+之间的能量传递的临界距离为15.345 nm,并且证明了能量传递是由偶极-偶极相互作用产生的.通过计算得到能量传递效率最高达到了76.04%.  相似文献   

17.
采用高温固相法在还原气氛下合成了Ca9(1-x-y)Al(PO4)7:xCe3+,yDy3+荧光材料,并对其发光特性进行了研究。XRD测试表明所合成样品为纯相Ca9Al(PO4)7晶体。在268 nm紫外光激发下,Ca9Al(PO4)7:Ce3+呈现峰值位于363 nm的宽带发射。在350 nm近紫外光激发下,Ca9Al(PO4)7:Dy3+发射光谱为窄带谱,主峰分别位于483 nm和574 nm,对应Dy3+的4F9/2→6H15/2和4F9/2→6H13/2特征跃迁,呈黄白光发射。荧光光谱表明:Ce3+,Dy3+共掺之后,Ce3+不仅对Dy3+的特征发射有明显的敏化作用,而且通过调节Ce3+和Dy3+的掺杂比例,可实现从黄白光到白光的颜色变化。研究发现:Ca9(1-x-y)Al(PO4)7:xCe3+,yDy3+样品中,掺杂离子的最佳摩尔分数为x=0.02,y=0.02,此时色坐标为(0.306,0.313)。  相似文献   

18.
采用高温固相法制备了系列不同浓度Eu3+离子掺杂的K2CaP2O7红色荧光粉。通过X射线衍射、扫描电子显微镜、荧光光谱和荧光寿命曲线等手段对荧光粉的物相结构、形貌以及发光性质进行了研究。结果表明所制备的荧光粉均属于单斜结构,Eu3+离子掺杂没有引起晶体结构明显变化,荧光粉形貌不规则,颗粒为微米量级且部分发生团聚。在393 nm紫外光激发下,荧光粉显示出红光发射,最强发射峰位于613 nm。Eu3+离子掺杂浓度对发光强度有显著影响,最佳掺杂摩尔分数为0.08,由此计算能量传递临界距离为1.61 nm。荧光寿命受掺杂浓度影响较小,当Eu3+掺杂摩尔分数为0.005~0.10时,荧光寿命在2.45~2.58 ms范围内。变温发射光谱显示,测试温度为150℃时,荧光粉的发光强度为室温的73%。研究表明,Eu3+离子掺杂的K2CaP2O7是性能较好的红色荧光粉。  相似文献   

19.
采用高温固相法制备了Nd,Tm和Yb掺杂的ZBLAN玻璃上转换材料.Tm3+,Yb3+的摩尔浓度分别固定为0.01%,0.3%,Nd3+摩尔浓度变化范围为0.1%~2%.在室温下,测试了样品在300~1 000nm间的吸收光谱.在798 nm近红外光激发下,测试了样品的上转换光谱.实验发现,样品在798 nm红外光激发下发出了较强的多波段(红,蓝和绿)的可见光.由上转换可见光各波段的发射谱线,给出了能级跃迁机制.蓝光主要来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Nd3+的2H7/2到基态4I9/2的跃迁,红光来源于Nd3+的2H11/2到基态4i9/2的跃迁.研究发现,在Nd3+,Tm3+,Yb3+:ZBLAN玻璃样品中存在激发态吸收,能最转移和交叉弛豫等上转换过程.其发光机理是Nd3+,TM3+和Yb3+离子之间的能量转移.根据Nd3+摩尔浓度不同其上转换发光强度不同,分析了掺入稀土的浓度对上转换发光效率的影响.当Nd3+浓度为1.5%(摩尔分数)时上转换发光最强,大于1.5%后发光开始减弱.  相似文献   

20.
采用微乳液-水热法合成一系列NaLa(MoO4)2∶Eu3+/Tb3+/Tm3+单/共掺的荧光粉(NLM)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、荧光光谱对荧光粉的晶体结构、形貌特征和发光性质进行了测试和研究。结果表明:所制备的样品均为四方晶系单晶,Eu3+,Tb3+,Tm3+均以取代的方式进入La3+的格位;样品的形貌为四方片状结构,颗粒尺寸1~1.5μm;当Eu3+掺杂浓度为是9%时,NLM∶9%Eu3+荧光粉在616nm发射峰是最强的,此时在NLM基质中Eu3+之间的临界传递距离(Rc)约为15.20。在NLM∶9%Eu3+的发射光谱中,591nm处的发射峰为Eu3+的5 D0→7 F1的磁偶极跃迁;616nm处的发射峰为Eu3+的5 D0→7 F2的电偶极跃迁,电偶极跃迁发射强度约是磁偶极跃迁强度的10倍,表明Eu3+位于无反演对称中心格位。采用固定Eu3+(Tb3+)的浓度,改变Tb3+(Eu3+)浓度的方法,研究了Eu3+与Tb3+之间的能量传递机理。通过调节Eu3+,Tb3+和Tm3+的掺杂浓度,实现在单一基质条件下可见光区域的光色调节,在360nm激发下NLM∶x%Eu3+,y%Tb3+,z%Tm3+荧光粉的发光由蓝光(0.205,0.135)调到伪白光(0.305,0.266)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号