首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在980 nm LED激光器激发下,研究了Yb3+-Er3+共掺杂的Y2O3,Y2O2S和NaYS2粉末材料的上转换发射特性。比较了Y2O3∶0.20 Yb3+,0.03Er3+和Y2O2S∶0.20 Yb3+,0.03Er3+以及NaYS2:0.20 Yb3+,0.03Er3+粉末样品的上转换发光光谱,探讨了Er3+上转换发射对基质的依赖性,分析了S2--Yb3+和S2--Er3+电荷转移态对Yb3+-Er3+间能量传递和能级间跃迁几率的影响,借助于能级图解释了在不同基质中Yb3+-Er3+间的能量传递和Er3+的上转换发光机制。  相似文献   

2.
利用温和的溶剂热方法合成了具有上转换发光性能的Yb3+-Tm3+和Yb3+-Er3+共掺的纳米NaYGdF4。在该体系中, 通过调节Gd3+在基质中的掺杂量可以有效地控制产物的相变、尺寸以及上转换荧光性能。XRD和TEM分析结果表明, Gd3+的掺入在促进NaYF4纳米颗粒由立方相到六方相转变的同时有助于减小其尺寸。上转换光谱研究表明, 在Yb3+-Tm3+和Yb3+-Er3+共掺体系中, 可通过优化Gd3+的掺杂量来有效提高产物的上转换荧光强度。同时, 通过研究Tm3+和Er3+在不同可见光波段的发光强度与泵浦功率的关系探讨了上转换发光的机制。  相似文献   

3.
采用传统高温固相法合成了一个系列不同Er3+浓度单掺的BaGd2ZnO5荧光粉和两个系列分别改变Er3+、Yb3+浓度的共掺杂BaGd2ZnO5荧光粉.采用X射线衍射对得到荧光粉的晶体结构进行了分析,证实所有产物均为纯相BaGd2ZnO5,掺杂浓度的变化未引起晶相改变.采用980nm激光作为激发源,在同样条件下测量了不同稀土掺杂浓度样品的上转换发射光谱.实验发现Er3+单掺杂样品的绿色上转换发光强于红色上转换发光;当Yb3+浓度为20%,不同Er3+浓度共掺杂样品的红色上转换发光强于绿色发射上转换发射;而固定Er3+浓度为5%,不同Yb3+浓度样品的红色和绿色上转换发射强度均较强.研究了不同稀土离子掺杂浓度样品的上转换发光强度与激光器工作电流(即不同激发功率密度)的关系,通过分析发现所有样品的红色和绿色上转换发光均为双光子过程.计算了不同稀土掺杂浓度样品的色坐标,发现掺杂浓度对样品色坐标具有较大影响,通过调整掺杂浓度可对色坐标进行调整.  相似文献   

4.
研究一种具有良好上转换发光性能的稀土掺杂发光材料,对于防伪技术领域具有非常重要的意义。为了改善LiYF4∶Yb3+/Ho3+微米晶体的上转换发光性能,采用水热合成法成功制备了一系列Gd3+掺杂的LiYF4∶Yb3+/Ho3+微米晶体,并采用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的相纯度和晶体形貌尺寸进行表征;在980 nm激光激发下,通过荧光光谱测试对LiGdxY1-xF4∶Yb3+/Ho3+微米晶体的上转换发光性能进行分析。首先,研究了LiGdxY1-xF4∶Yb3+/Ho3+微米晶体的晶体结构、尺寸、形貌和上转换发光性能的影响。结果显示,LiGdxY1-xF4∶Yb3+/Ho3+微米晶体样品的XRD衍射峰与四方相的LiYF4标准卡(PDF#17-0874)特征峰的位置完全对应且没有其他杂峰,SEM实验结果显示晶体形貌为八面体形状,表明成功合成了纯四方相的LiGdxY1-xF4∶Yb3+/Ho3+微米晶体;荧光光谱测试结果显示,样品的上转换发光强度随着Gd3+掺杂比例的升高呈现出先增强后减弱的趋势,并且在Gd3+掺杂浓度为30 mol%时达到最强。其次,进一步研究了Gd3+掺杂浓度30 mol%样品的上转换发光性能与激发功率之间的关系,激发功率为0.5~1.5 W。LiGd0.3Y0.49F4∶Yb3+/Ho3+微米晶体的红色和绿色上转换发光强度之比(R/G)随着激发功率的增加只发生大约12%的变化,样品的上转换发光并没有因为激发功率的增加而发生明显的变色,仍然可以发出稳定明亮的绿色光。这一现象表明,Gd3+的掺入很好地改善了样品的上转换发光性能,这种稳定高效的发光性能保证了其良好的防伪性能。最后,将Gd3+掺杂浓度为30 mol%的LiYF4∶Yb3+/Ho3+微米晶体粉末与丝网金属油墨按照一定比例混合制成丝网防伪油墨,通过丝网印刷技术在玻璃基底上印制了“西安”字样的防伪标识图案,经过干燥处理后在980 nm激光的激发下,发出明亮且稳定的绿色可见光,制成的防伪标识图案具有发光强度高、易于识别、不易脱落的特点,可被广泛应用于防伪领域。  相似文献   

5.
在Yb3+和Er3+共掺杂氟化物纳米体系中,2%Er3+掺杂浓度为上转换发光的最佳浓度,高于这个浓度,随着Er3+掺杂浓度的增加,将发生严重上转换发光浓度猝灭,已为人们广泛认知和接受.本文合成了不同Er3+/Yb3+掺杂浓度比的NaYb1-x F4:Er3+x系列上转换发光纳米粒子.通过扫描电镜、XRD和荧光光谱等分析...  相似文献   

6.
采用共沉淀法制备了Er3+,Yb3+共掺Gd2WO6荧光粉,通过对浓度猝灭曲线的分析表明Er3+间的相互作用类型为电偶极-电偶极相互作用。分析了样品荧光的温度效应并得到摩尔分数为5%和20%的Er3+掺杂样品的激活能ΔE分别为0.27和0.29 eV。利用Er3+的2H11/2和4S3/2能级跃迁至基态的荧光强度比随温度变化这一特性研究了两个不同Er3+掺杂浓度样品的下转换温度效应,结果表明该材料体系具有良好的温度传感特性。  相似文献   

7.
纳米晶ZrO2:Er3+-Yb3+的制备及其室温上转换发射   总被引:3,自引:0,他引:3       下载免费PDF全文
用化学共沉淀法制备了ZrO2:Er3+-Yb3+纳米晶粉体,所制备的纳米晶粉体具有较强的室温上转换发射和红外发射.研究了样品的晶体结构和上转换发光性质随着Yb3+掺杂浓度和煅烧温度的变化关系.通过X射线衍射谱分析发现,经800 ℃煅烧2 h后得到的ZrO2:Er3+-Yb3+纳米晶是四方相和单斜相的混合结构,经950 ℃煅烧2 h后得到的样品以单斜相为主,随着Yb3+浓度的增加四方相增多.对800 ℃煅烧下Er3+, Yb3+共掺的样品,随着Yb3+浓度的增加,绿光和红光上转换发射强度都增大,但是红光上转换发射谱发射强度的增长幅度明显要强于绿光上转换发射谱发射强度的增长幅度.对样品上转换发射谱的分析发现,上转换红光、绿光的发射都是双光子过程.  相似文献   

8.
采用高温固相法合成了不同Yb3+和Er3+掺杂浓度的BaIn6Y2O13上转换发光材料。XRD数据显示,所合成的BaIn6Y2O13∶Yb3+, Er3+属于六方晶系,引入激活剂并没有改变基质的晶体结构。利用971 nm半导体激光器激发样品,测量样品在不同激发光密度下上转换发射光谱和发射光功率,计算了上转换能量效率。数据表明在激发密度不变,激活剂浓度增加时,上转换光绿红比减小;激活剂浓度不变激发光密度增加时,发射光绿红比增大。分析表明是由于Er3+之间的交叉弛豫增强导致绿红比随激活剂掺杂浓度的增加而减小;Yb3+和Er3+之间的能量传递和Er3+的激发态吸收增强导致绿红比随激发密度的增加而增大。随着激发功率增加, 在较低激发功率时, 上转换绿光发射强度与激发功率的二次方成正比; 在较高激发功率时, 上转换绿光发射强度与激发功率的一次方成正比, 与报道的结果一致。能量效率存在极大值, 分别为0.38%(Yb3+掺杂浓度3%, Er3+掺杂浓度1%)和0.06%(Yb3+掺杂浓度9%, Er3+掺杂浓度3%), 产生极值的一个原因是4I13/2亚稳态能级寿命较长, 聚集了大量电子, 使基态电子急剧减少, 导致上转换泵浦效率降低。  相似文献   

9.
采用高温熔融法和热处理工艺制作了含有GdF3纳米晶的氧氟微晶玻璃。在386 nm激发下,Dy3+掺杂氧氟微晶玻璃的发光强度明显增强,且蓝光对黄光的发光强度比逐渐增大,表明Dy3+已进入到GdF3纳米晶中。在980 nm激光器泵浦下,Er3+,Yb3+共掺氧氟微晶玻璃的上转换发光随着热处理温度的升高明显增强,Er3+的上转换发光出现明显的Stark分裂现象,这亦说明Er3+已进入到GdF3纳米晶相中。通过研究上转换发光强度与泵浦功率的关系,确定绿光上转换发光为双光子过程。  相似文献   

10.
Er3+/Yb3+共掺KLaF4纳米晶的制备和上转换发光   总被引:1,自引:1,他引:0  
赖文彬  周海芳  程树英  赖云锋 《发光学报》2013,34(10):1259-1263
用水热法成功制备了Er3+/Yb3+共掺不同浓度比的KLaF4纳米晶,并在300℃氩气气氛下退火。利用X射线衍射谱(XRD)、透射电子显微镜(TEM)对样品的晶体结构和形貌进行了表征。测量了样品漫反射谱、980 nm激发下的上转换发射光谱和2H11/2能级的荧光寿命。研究结果表明:制备得到的样品为六方相的纳米棒,退火后纳米棒平均直径为28 nm,长为130 nm;在Er3+浓度一定的情况下,提高Yb3+掺杂量有利于增强973 nm附近光的吸收;980 nm的近红外光可上转换为较强的绿光和红光,且红绿光强度和2H11/2能级的平均荧光寿命均会随着Yb3+掺杂浓度的增加而下降。  相似文献   

11.
BaGd2ZnO5∶Yb3+,Er3+是目前报道的上转换效率最高的发光材料,有广泛的应用前景,但到目前为止还没有关于该基质材料中Er3+发光动力学过程研究的报道。采用溶胶凝胶法制备BaGd2ZnO5∶Yb3+,Er3+上转换发光材料,测量不同激发密度下上转换光发射功率及上转换效率。数据表明:当激发密度较低时,绿色光发射强度与激发光功率的二次方成正比;激发密度较高时,与激发光功率的一次方成正比;上转换能量效率先增大后减小,具有一个极大值。通过建立不同激发密度下,Er3+离子4 S3/2能级上转换光发射速率方程模型,阐述了产生这一现象的动力学过程和绿色光发射产生的机理。在弱激发条件下,用方波调制的971nm LD激光激发BaGd2ZnO5∶Yb3+,Er3+样品,测量上转换绿光的上升和衰减过程,用Er3+离子4 S3/2能级的速率方程拟合绿光的上升和衰减过程确定相关参数,证实Er3+离子4 S3/2能级粒子布居主要来自于Yb3+→Er3+的能量传递。  相似文献   

12.
为了探究泵浦功率对不同浓度敏化剂离子掺杂的上转换材料发光特性的影响,采用溶剂热法,成功制备了不同浓度敏化剂Yb3+掺杂的NaYF4∶Yb3+, Er3+上转换纳米颗粒。首先对这种纳米晶体的结构和形貌进行了详细的分析,使用X射线粉末衍射仪和透射电子显微镜测试了制备的纳米晶体的结构和形貌。表征结果证明了制备的纳米颗粒均为结晶性良好、形状规则的六方相纳米晶体,随着Yb3+掺杂浓度的提高,纳米晶体的粒径有所增加。在此基础上,通过控制泵浦功率对不同浓度敏化剂Yb3+掺杂的NaYF4∶Yb3+, Er3+上转换纳米颗粒在980 nm激发光下的光致发光特性做了详细的研究。对于不同浓度敏化剂掺杂的样品,随着泵浦功率的提高,上转换发光的强度增强,这可以归因于高泵浦功率促进材料对激发光的吸收。上转换发光的红绿比也得到了提高, 值得注意的是, 在不同浓度敏化剂Yb3+掺杂的样品中,发光的红绿比改变的程度和可调谐的范围有所不同。为了深入的了解上转换发光机制,对不同浓度样品中可能发生的电子能量传递机制进行了讨论并提出假设,认为上转换发光过程中,不同浓度样品中红绿比变化程度的不同是发光离子组合之间的平均距离和包括多声子弛豫、交叉弛豫和反向能量传递的非弛豫过程的综合作用。在低浓度敏化剂掺杂的样品中,由于掺杂浓度导致Yb3+和Er3+之间的平均距离较大,反向能量传递过程比较微弱。在非弛豫过程中,发生在同一发光中心Er3+上的多声子弛豫和相邻发光中心Er3+之间的交叉弛豫为主要过程。随着泵浦功率的提高,高能级的布居速率增加减弱了非辐射弛豫对发光的影响,材料的红绿比只有微弱的提高,绿光是上转换发光中的主要成分。随着掺杂浓度的提高,敏化剂离子Yb3+和激活剂离子Er3+之间的平均间距减小,反向能量传递过程得到增强,成为非辐射弛豫过程中的主要部分。由于泵浦功率增强而提高的高能级对上转换发光的贡献,通过相邻敏化剂和激活剂离子之间的反向能量传递过程得到迅速的衰减,使红光成为上转换发光中的主要成分。在980 nm的近红外光激发下,在不同浓度Yb3+掺杂的样品中存在不同侧重的非辐射弛豫过程, 由于多声子弛豫、交叉弛豫和反向能量传递共同作用,红绿比随着泵浦功率提高而增加。这种发光特性不但使得我们得到红光性能更好的上转换荧光材料,而且可以通过测定材料的红绿比来判定材料的掺杂浓度。经过进一步的设计和修饰,这种纳米材料很有潜力作为一种多功能光动力治疗纳米平台在生物检测领域中得到应用。不同浓度样品中可能发生的电子能量转移过程的提出,有利于对上转换发光机理的了解和稀土发光离子组合的设计和优化。  相似文献   

13.
研究了含Er3+离子浓度较高(155×1020cm-3)的磷酸盐玻璃中Yb3+敏化离子浓度和Al2O3含量对Er3+离子光谱性质的影响.根据掺Er3+磷酸盐玻璃的吸收光谱,利用JuddOfelt理论计算了强度参数Ωt(t=2,4,6)、Er3+离子的4I132→4I152能级跃迁振子强度、自发辐射几率等光谱参数.用McCumber理论计算了Er3+离子的受激发射截面,结果表明Yb3+离子浓度不影响Er3+离子的受激发射截面,但会影响Er3+离子荧光强度,Yb3+含量越高,Er3+的荧光越强.对掺Er3+磷酸盐玻璃的荧光上转换光谱测试表明,Yb3+含量越高,上转换荧光越强,玻璃上转换主要表现为双光子吸收机理研究了含Er3+离子浓度较高(155×1020cm-3)的磷酸盐玻璃中Yb3+敏化离子浓度和Al2O3含量对Er3+离子光谱性质的影响.根据掺Er3+磷酸盐玻璃的吸收光谱,利用JuddOfelt理论计算了强度参数Ωt(t=2,4,6)、Er3+离子的4I132→4I152能级跃迁振子强度、自发辐射几率等光谱参数.用McCumber理论计算了Er3+离子的受激发射截面,结果表明Yb3+离子浓度不影响Er3+离子的受激发射截面,但会影响Er3+离子荧光强度,Yb3+含量越高,Er3+的荧光越强.对掺Er3+磷酸盐玻璃的荧光上转换光谱测试表明,Yb3+含量越高,上转换荧光越强,玻璃上转换主要表现为双光子吸收机理 关键词: Er3+离子 磷酸盐玻璃 光谱性质 JuddOfelt参数  相似文献   

14.
Tm3+/Yb3+共掺碲酸盐玻璃的近红外发光及能量传递机理   总被引:3,自引:2,他引:1  
采用高温熔融法制备了组分为TeO2-ZnO-Na2O的Tm3+离子单掺和Tm3+/Yb3+共掺碲酸盐玻璃,应用Judd-Ofelt理论计算分析了玻璃样品的强度参量Ωt(t=2,4,6),自发辐射跃迁几率A,荧光分支比β和荧光辐射寿命τrad等光谱参量,测量得到了不同Yb3+离子掺杂浓度下玻璃样品的Tm3+离子上转换发光谱.结果显示,在980nm泵浦光激励下玻璃样品发射出强烈的近红外上转换荧光.对Tm3+离子上转换发光分析表明,强烈的Tm3+离子近红外上转换发光主要来自于Yb3+/Yb3+离子间的共振能量传递以及基于单声子和双声子辅助的Yb3+/Tm3+离子间的非共振能量传递过程,并进一步计算得到了声子贡献比和能量传递系数.最后,计算分析了Tm3+∶3 F4→3 H6能级间跃迁的1.8μm波段吸收截面、受激发射截面和增益系数.研究表明,Yb3+/Tm3+共掺TeO2-ZnO-Na2O玻璃可以作为近红外波段固体激光器的潜在增益基质.  相似文献   

15.
采用高温固相法制备了AlF3-YbF3∶Er3+上转换荧光粉,分析了Er3+掺杂浓度对其发光强度的影响。通过X-ray diffraction (XRD)对样品物相分析。利用荧光发射光谱研究了该荧光粉的上转换发光性能,进而提出其上转换能量传递机理,研究结果表明:在980 nm半导体激光器激发下,以AlF3-YbF3为基质,当Er3+的掺杂浓度为0.7 mol%时,该荧光粉的红光发射强度最强;通过上转换发光强度与泵浦电流关系曲线的拟合,表明AlF3-YbF3∶Er3+上转换荧光粉的红光上转换过程为双光子过程。  相似文献   

16.
利用熔融法制备了Tm3+/Yb3+/Er3+共掺氟氧硅酸盐玻璃.在980nm LD激发下,研究了Tm3+离子和Er3+离子之间的能量传递和Tm3+离子的上转换荧光,分析了Tm3+离子的上转换机理,发现蓝色上转换荧光是三光子过程对应于1 G4→3 H6的跃迁,而红色上转换荧光是双光子过程对应于1 G4→3 F4的跃迁.比较不同掺杂摩尔分数的样品的荧光强度,发现Tm3+离子的最佳掺杂摩尔分数为0.2%.  相似文献   

17.
利用高温热溶剂法合成了不同Yb3+和Tm3+掺杂浓度的NaYF4:Yb3+,Tm3+上转换发光纳米粒子。利用扫描电子显微镜、X射线衍射分析、荧光光谱对样品进行形貌和发光性质的表征。结果表明,不同Yb3+和Tm3+离子掺杂浓度对纳米粒子的上转换发光性质有很大影响。随着Tm3+离子浓度的提高,Tm3+离子之间的浓度猝灭和交叉弛豫效应对发光强度的影响愈来愈显著,导致纳米粒子的发光猝灭;同样,随着Yb3+浓度的提高,纳米粒子的发光强度也是先增大后减小,这是因为Yb3+离子浓度掺杂过高导致发光猝灭。  相似文献   

18.
Er3+/Yb3+共掺硅酸盐玻璃样品的多波段光谱特性   总被引:1,自引:0,他引:1  
制作了系列Er3+/Yb3+共掺硅酸盐玻璃,结合Er3+-Yb3+之间的能量传递模型,对Er3+/Yb3+掺杂样品不同波段的发射光谱进行了测量和分析.结果表明,Er3+/Yb3+掺杂浓度对红外荧光强度、半峰全宽及上转换可见光都有显著的影响;Yb3+离子的引入导致Er3+/Yb3+离子单元的等效受激吸收几率增大,使Er3+离子的激活度增加,引起Er3+离子的红外荧光和上转换发光的同步增强.  相似文献   

19.
采用高温固相法合成了Tb3+、Yb3+共掺杂的BaGd2ZnO5荧光粉。XRD测量数据表明合成的样品为纯相。在Tb3+特征激发(297 nm)下得到了Yb3+的特征发射(977 nm),并且对Tb3+与Yb3+能级图进行分析,证明Tb3+到Yb3+为合作能量传递。测量了不同Yb3+浓度下Tb3+的5D4能级(544 nm)的发光寿命曲线,计算得到Tb3+与Yb3+的能量传递效率和量子效率,最高量子效率为125.5%。Yb3+的发射与硅太阳能电池的吸收匹配,该材料有可能应用于硅太阳能电池以提高其转换效率。  相似文献   

20.
研究了纳米相氟氧化物玻璃陶瓷中Er3+Yb3+离子对的量子剪裁发光造成的强的光谱调制现象。测量了Er3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的X射线衍射谱、表面形貌、激发光谱、吸收光谱、和发光光谱;而且也与Tb3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的相对应的光谱参数进行了比较。发现378 nm光激发样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV所导致的652.0 nm红色发光强度为522 nm光激发时的680.85倍和303.80倍;我们还发现378 nm光激发所导致的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的 652.0 nm红色发光强度为样品(C) Er(0.5%)∶FOV 的491.05和184.12倍。我们还发现在378 nm光激发时的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的{978.0和1 012.0 nm}红外发光强度依次分别为样品(C) Er(0.5%)∶FOV 的{58.00和293.62}倍和{25.11和 67.50}倍。更进一步,对于652.0 nm波长发光的激发谱,发现(A) Er(1%)Yb(8.0%)∶FOV和(B) Er(0.5%)Yb(3.0%)∶FOV的378.5 nm激发谱峰强度是(C) Er(0.5%)∶FOV的大约606.02和199.83倍。同时,也发现样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的一级量子剪裁红外1 012或978 nm发光强度为样品(D) Tb(0.7%)Yb(5.0%)∶FOV的二级量子剪裁红外976 nm发光强度的101.38和29.19倍。发现的该量子剪裁是目前所报道的最强的量子剪裁。因此,相信所发现的氟氧化物纳米玻璃陶瓷中Er3+Yb3+离子对的一级量子剪裁发光是强的可以作为量子剪裁层应用到提高晶硅太阳能电池的发电效率。研究结果也能加速对目前国际热点的下一代环保的光谱调制太阳能电池的探索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号