首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Diarylethene‐bridged peptides were developed to photoregulate biomolecular interactions. The peptides are made up of diarylethene‐bridged and DNA‐binding regions at their N‐ and C termini, respectively. The two regions could be independently designed and combined as desired. The α‐helicities of the peptides were photoregulated in on/off or off/on manners, and the manner depended on the positions of two ornithine (Orn) residues for cross‐linking reaction at the diarylethene‐bridged region. In the case of the on/off manner, when the diarylethene structure adopted the open form on the peptides, the peptides folded into stable α‐helices. Upon UV irradiation, the diarylethene moiety isomerized to its closed form to destabilize the helical structures. Quartz crystal microbalance (QCM) analysis showed that the open isomer strongly associated with a target DNA, as compared with the closed one. When the closed‐form peptide existing in the DNA complex was irradiated with a fluorescent lamp in the middle of the QCM monitoring, the frequency change (ΔF) was enhanced by the diarylethene photoisomerization.  相似文献   

2.
The "open" and "closed" isomers of the diarylethene molecule that can be converted between each other upon photo-excitation are found to have drastically different current-voltage characteristics when sandwiched between two graphene nanoribbons (GNRs). More importantly, when one GNR is metallic and another one is semiconducting, strong rectification behavior of the "closed" diarylethene isomer with the rectification ratio >10(3) is observed. The surprisingly high rectification ratio originates from the band gap of GNR and the bias-dependent variation of the lowest unoccupied molecular orbital of the diarylethene molecule, the combination of which completely shuts off the current at positive biases. Results presented in this paper may form the basis for a new class of molecular electronic devices.  相似文献   

3.
The chemical functionalization of hydrogen-terminated silicon(111) surfaces with photochromic diarylethene using an ethylene anchoring group was achieved. Conductive atomic force microscopy measurements showed the current changes on modified silicon electrodes caused by light-induced isomerization of the diarylethene between an open form and a closed form.  相似文献   

4.
Stimuli‐responsive photoluminescent materials have attracted considerable attention owing to their potential applications in security protection because the information recorded directly in materials with static luminescent outputs are usually visible under either ambient or UV light. Herein, we realize reversible information anticounterfeiting by loading a photoswitchable diarylethene derivative into a lanthanide metal–organic framework (MOF). Light triggers the open‐ and closed‐form isomerization of the diarylethene unit, which respectively regulates the inactivation and activation of the photochromic FRET process between the diarylethene acceptor and lanthanide donor, resulting in reversible luminescence on–off switching of the lanthanide emitting center in the MOF host. This photoresponsive host–guest system allows for reversible multiple information pattern visible/invisible transformation by simply alternating the exposure to UV and visible light.  相似文献   

5.
6.
Catalytic reactions of DNA polymerase I from E. coli (Klenow fragment, KF) were monitored directly with a template/primer (40/25- or 75/25-mer)-immobilized 27-MHz quartz-crystal microbalance (QCM). The 27-MHz QCM is a very sensitive mass-measuring device in aqueous solution, as the frequency decreases linearly with increasing mass on the QCM electrode at the nanogram level. Three steps in polymerase reactions which include 1) binding of DNA polymerase to the primer on the QCM (mass increase); 2) elongation of complementary nucleotides along the template (mass increase); and 3) release of the enzyme from the completely polymerized DNA (mass decrease), could be monitored continuously from the time dependencies of QCM frequency changes. The binding constant (Ka) of KF to the template/primer DNA was 10(8)M(-1) (k(on) = 10(5)M(-1)s(-1) and k(off)= 10(-3)s(-1)), and decreased to 10(6)M(-1) (k'on = 10(4)M(-1)s(-1) and k'off = 10(-2)s(-1)) for completely polymerized DNA. This is due to the 10-fold decrease in binding rate constant (k(on)) and 10-fold increase in dissociation rate constant (k(off)) for completed DNA strands. Ka values depended slightly on the template and primer sequences. The kinetic parameters in the elongation process (k(cat) and Km) depended only slightly on the DNA sequences. The repair process during the elongation catalyzed by KF could also be monitored in real time as QCM frequency changes.  相似文献   

7.
The diarylethene derivative 1,2‐bis‐(5′‐dimesitylboryl‐2′‐methylthieny‐3′‐yl)‐cyclopentene ( 1 ) containing dimesitylboryl groups is an interesting photochromic material. The dimesitylboryl groups can bind to F?, which tunes the optical and electronic properties of the diarylethene compound. Hence, the diarylethene derivative 1 containing dimesitylboryl groups is sensitive to both light and F?, and its photochromic properties can be tuned by a fluoride ion. Herein, we studied the substituent effect of dimesitylboron groups on the optical properties of both the closed‐ring and open‐ring isomers of the diarylethene molecule by DFT/TDDFT calculations and found that these methods are reliable for the determination of the lowest singlet excitation energies of diarylethene compounds. The introduction of dimesitylboron groups to the diarylethene compound can elongate its conjugation length and change the excited‐state properties from π→π* transition to a charge‐transfer state. This explains the modulation of photochromic properties through the introduction of dimesitylboron groups. Furthermore, the photochromic properties can be tuned through the binding of F? to a boron center and the excited state of the diarylethene compound is changed from a charge‐transfer state to a π→π* transition. Hence, a subtle control of the photochromic spectroscopic properties was realized. In addition, the changes of electronic characteristics by the isomerization reaction of diarylethene compounds were also investigated with theoretical calculations. For the model compound 2 without dimesitylboryl groups, the closed‐ring isomer has better hole‐ and electron‐injection abilities, as well as higher charge‐transport rates, than the open‐ring isomer. The introduction of dimesitylboron groups to diarylethene can dramatically improve the charge‐injection and ‐transport abilities. The closed isomer of compound 1 ( 1 C ) has the best hole‐ and electron‐injection abilities, whereas the charge‐transport rates of the open isomer of compound 1 ( 1 O ) are higher than those of 1 C . Importantly, 1 O is an electron‐accepting and ‐transport material. These results show that the diarylethene compound containing dimesitylboryl groups has promising potential to be applied in optoelectronic devices and thus is worth to be further investigated.  相似文献   

8.
The preparation of the first photochromic, organometallic derivative of the diarylethene class, the CpRu-complexed benzodimethyldihydropyrene 3, in which the organometallic is directly attached to the photochromic core, is described. The negative dark purple photochrome 3 readily bleaches to form the almost colorless cyclophanediene 3' on irradiation with visible light. The latter switches back to 3 either photochromically with UV light, electrochromically on reduction, or thermochromically on heating. Essentially quantitative conversion between the two states is possible. The open complex 3' thermally closes 2.6 times faster than the uncomplexed parent 2', but the closed form 3 opens with visible light at about 30% of the rate of uncomplexed 2. Both open forms, complexed 3' and uncomplexed 2' close equally fast with UV light.  相似文献   

9.
The electronic transport properties and switching mechanism of single photochromic diarylethene derivatives sandwiched between two gold surfaces with closed and open configurations are investigated by a fully self-consistent nonequilibrium Green's function method combined with density functional theory. The calculated transmission spectra of two configurations are strikingly distinctive. The open form lacks any significant transmission peak within a wide energy window, while the closed structure has two significant transmission peaks on both sides of the Fermi level. The electronic transport properties of the molecular junction with closed structure under a small bias voltage are mainly determined by the tail of the transmission peak contributed unusually by the perturbed lowest perturbed unoccupied molecular orbital. The calculated on-off ratio of currents between the closed and open configurations is about two orders of magnitude, which reproduces the essential features of the experimental measured results. Moreover, we find that the switching behavior within a wide bias voltage window is extremely robust to both substituting F or S for H or O and varying end anchoring atoms from S to Se and Te.  相似文献   

10.
The extent of electronic coupling between a boron dipyrromethene (BODIPY) fluorophore and a diarylethene (DAE) photoswitch has been modulated in a covalently linked molecular dyad by irradiation with either UV or visible light. In the open isomer, both moieties can be regarded as individual chromophores, while in the closed form the lowest electronic (S0→S1) transition of the dyad is slightly shifted, enabling photomodulation of its fluorescence. Transient spectroscopy confirms that the dyad behaves dramatically different in the two switching states: while in the open isomer it resembles an undisturbed BODIPY fluorophore, in the closed isomer no fluorescence occurs and instead a red‐shifted DAE behavior prevails.  相似文献   

11.
Cross‐linked liquid‐crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross‐linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross‐linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed‐ring to open‐ring isomerization, the bent films revert to the initial flat state. Without visible‐light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross‐linked diarylethene LC polymers.  相似文献   

12.
The present study quantitatively analyses the gated photochromism and the acidity photomodulation properties of a diacid dithienylethene compound. Photoisomerisation between the open and closed isomers was investigated by UV/visible and (1)H NMR spectroscopy. It was found that the photocyclisation quantum yield of the diacid form was remarkably high (around 90%). Partial neutralisation of the open isomer revealed a gated photochromism as the photocyclisation quantum yield of the mono- and dianion were 50 and 67%, respectively. A considerable photomodulation of the acidity was observed: the closed isomer is more acid than the open one by more than one pK(a) unit. This effect has been shown to be exploitable for a reversible photo-acid generation. This is the first time that a complete quantitative investigation that allows for the determination of the main photochromic, spectral and thermodynamic parameters of a base-sensitive photochromic diarylethene has been carried out.  相似文献   

13.
A novel, highly stable photochromic dyad 3 based on a perylene bisimide (PBI) fluorophore and a diarylethene (DAE) photochrome was synthesized and the optical and photophysical properties of this dyad were studied in detail by steady‐state and time‐resolved ultrafast spectroscopy. This photochromic dyad can be switched reversibly by UV‐light irradiation of its ring‐open form 3 o leading to the ring‐closed form 3 c , and back reaction of 3 c to 3 o by irradiation with visible light. Solvent‐dependent fluorescence studies revealed that the emission of ring‐closed form 3 c is drastically quenched in solvents of medium (e.g., chloroform) to high (e.g., acetone) polarities, while the emission of the ring‐open form 3 o is appreciably quenched only in highly polar solvents like DMF. The strong fluorescence quenching of 3 c is attributed to a photoinduced electron‐transfer (PET) process from the excited PBI unit to ring‐closed DAE moiety, as this process is thermodynamically highly favorable with a Gibbs free energy value of ?0.34 eV in dichloromethane. The electron‐transfer mechanism for the fluorescence quenching of ring‐closed 3 c is substantiated by ultrafast transient measurements in dichloromethane and acetone, revealing stabilization of charge‐separated states of 3 c in these solvents. Our results reported here show that the new photochromic dyad 3 has potential for nondestructive read‐out in write/read/erase fluorescent memory systems.  相似文献   

14.
15.
Intercalation of an organic photochromic molecule into layered magnetic systems may provide multifunctional properties such as photomagnetism. To build up a photosensitive multifunctional magnet, an organic-inorganic hybrid system coupled with a photochromic diarylethene anion, 2,2'-dimethyl-3,3'-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) (DAE), and cobalt LDHs (layered double hydroxides), Co4(OH)7(DAE)0.5.3H2O, was synthesized by the anion exchange reaction between Co2(OH)3(CH3COO).H2O and DAE. In the dark and under UV-irradiated (313 nm) conditions, Co4(OH)7(DAE)0.5.3H2O with open and closed forms of DAE were obtained, respectively. The magnetic susceptibility measurements elucidated ferromagnetic intra- and interlayer interactions and Curie temperatures of TC = 9 and 20 K for cobalt LDHs with the open and closed forms of DAE, respectively. The enhancement of the Curie temperature from 9 to 20 K by substitution of the open form of DAE with the closed form of DAE as an intercalated molecule is attributed to the delocalization of the pi-electrons in the closed form of DAE, which enhances the interlayer magnetic interaction. The enhancement of the interlayer magnetic interaction induced by the delocalization of pi-electrons in intercalated molecules is strongly supported by the fact that the Curie temperature (26.0 K) of cobalt LDHs with (E,E)-2,4-hexadienedioate having a conjugated pi-electron system is enormously higher than that (7.0 K) of the cobalt LDHs with hexanedioate. By UV irradiation at 313 nm, Co4(OH)7(DAE)0.5.3H2O shows the photoisomerization of DAE from the open form to the closed one in the solid state, which leads to the enhancement of Curie temperature.  相似文献   

16.
The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring‐open diarylethenes is doped with a small amount of their chiral, ring‐closed counterpart. The molecules co‐assemble into helical fibers through hydrogen bonding and the handedness of the fibers is biased by the chiral, ring‐closed diarylethene. Photochemical ring closure of the open diarylethene yields the ring‐closed product, which is enriched in the template enantiomer.  相似文献   

17.
In order to elucidate the role of desorption/ionization efficiency of peptides in MALDI-MS, we focused on peptides with disulfide bonds, which form a rigid tertiary structure. We synthesized seven sets of peptides with one disulfide bond (oxytocin, somatostatin, [Arg(8)]-vasopressin, [Arg(8)]-vasotocin, cortistatin, melanin-concentrating hormone, urotensin II-related peptide) and five sets of peptides with two disulfide bonds (tertiapin, α-conotoxin GI, α-conotoxin ImI, α-conotoxin MI and α-conotoxin SI). Each peptide set consisted of three peptides: the oxidized form (S-S type), the reduced form (SH type), and an internal standard peptide in which all cysteine residues were substituted with alanine residues. In the case of urotensin II-related peptide, tertiapin, α-conotoxin ImI and α-conotoxin MI, the reduced form showed higher desorption/ionization efficiency than the oxidized form. In contrast, the other peptides revealed higher desorption/ionization efficiency in the oxidized form relative to the reduced form. These results imply that a rigid structure of peptides formed by disulfide bonds does not correlate with desorption/ionization efficiency in MALDI-MS.  相似文献   

18.
Photochromic reactions of diarylethene derivatives were detected at a single-molecule level by using a fluorescence technique. Fluorescent photoswitching molecules in which photochromic diarylethene and fluorescent bis(phenylethynyl)anthracene units are linked through an adamantyl spacer were synthesized, and switching of fluorescence upon irradiation with UV and visible light was followed in solution as well as on polymer films at the single-molecule level. Although in solution the fluorescence intensity gradually changed upon irradiation with UV and visible light, digital on/off switching between two discrete states was observed at the single-molecule level. The "on"- and "off"-times were dependent on the power of UV and visible light. When the power of UV and visible light was increased, the average on- and off-times became short in proportion to the reciprocal power of the light. The response-times were found to show distribution. The distribution of the on- and off-times is considered to reflect the difference in the micro-environment as well as conformation of the molecules.  相似文献   

19.
New cholesteric polymeric mixture containing nematic side‐chain homopolymer, 2 wt% of photochromic diarylethene dopant and 5 wt% of chiral‐photochromic dopant based on cinnamic acid and isosorbide was prepared. Upon UV irradiation of planarly‐oriented mixture films at room temperature, a transformation of open colorless form of diarylethene dopant into a closed colored form takes place, which is followed by the appearance of an intense absorption maximum in the visible spectral region and decreasing selective light reflection intensity. This process is photo‐ and thermo‐reversible and many cycles ‘recording‐erasing’ can be realized. UV irradiation and subsequent annealing of the films lead to untwisting of the cholesteric helix and cause an irreversible shift of selective light reflection to the long‐wavelength region. This process is explained by the E‐Z isomerization of chiral photochromic groups of the dopant relative to a C?C bond accompanied by a decrease in their twisting ability. It has been shown, that the use of the material prepared in this work provides an opportunity to record two images at the same time: one image is due to a change in the helical pitch and another (second) image is due to the photochromism of diarylethene dopant. It is pertinent to note that using the approach developed in this work allows one to widely vary the range of materials exhibiting dual photochromism. It was demonstrated that the mixture under study shows advantage as new photosensitive material for optics, optoelectronics and data recording. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Nucleoside-based diarylethenes are emerging as an especial class of photochromic compounds that have potential applications in regulating biological systems using noninvasive light with high spatio-temporal resolution. However, relevant microscopic photochromic mechanisms at atomic level of these novel diarylethenes remain to be explored. Herein, we have employed static electronic structure calculations (MS-CASPT2//M06-2X, MS-CASPT2//SA-CASSCF) in combination with non-adiabatic dynamics simulations to explore the related photoinduced ring-closing reaction of a typical nucleoside-based diarylethene photoswitch, namely, PS-IV. Upon excitation with UV light, the open form PS-IV can be excited to a spectroscopically bright S1 state. After that, the molecule relaxes to the conical intersection region within 150 fs according to the barrierless relaxed scan of the C1–C6 bond, which is followed by an immediate deactivation to the ground state. The conical intersection structure is very similar to the ground state transition state structure which connects the open and closed forms of PS-IV, and therefore plays a crucial role in the photochromism of PS-IV. Besides, after analyzing the hopping structures, we conclude that the ring closing reaction cannot complete in the S1 state alone since all the C1–C6 distances of the hopping structures are larger than 2.00 Å. Once hopping to the ground state, the molecules either return to the original open form of PS-IV or produce the closed form of PS-IV within 100 fs, and the ring closing quantum yield is estimated to be 56%. Our present work not only elucidates the ultrafast photoinduced pericyclic reaction of the nucleoside-based diarylethene PS-IV, but can also be helpful for the future design of novel nucleoside-based diarylethenes with better performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号