首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PHYTOCHROME CONVERSION BY ULTRAVIOLET LIGHT   总被引:5,自引:0,他引:5  
Abstract— Light absorbed primarily by the protein of phytochrome is active in transforming both the red and far-red absorbing forms. P r and P fr. The ratio of quantum yields for the conversions of P r and P fr by u.v. radiation (φrfr)u.v.= 1.5 and does not differ significantly from the ratio obtained with red and far-red light absorbed directly by the chromophores (φrfr)vvis. Thus, the efficiency of energy transfer from protein to chromophore is essentially the same for both forms of the chromoprotein. The ratio of the relative quantum yields for u.v. and visible light (φr)u.v./(φr)vis was 0.32 indicating that 30–35 per cent of the light energy absorbed by the protein was transferred to the chromophore.  相似文献   

2.
Abstract— Irradiation of the Pr form of phytochrome in the presence of flavin mononucleotide (FMN) which absorbs the actinic blue light yields Pfr at a rate greater than that in the absence of FMN. The actinic blue light absorbed by FMN enhances the phototransformation of Pr via the energy transfer from the former to the latter. On the other hand, the photoreversion of Pfr was inhibited by the presence of FMN when illuminated with blue light. The lack of photo-enhancement of the reversion of Pr, by blue light suggests that the Pfr chromophore (acceptor) transition dipole is virtually perpendicular to the FMN transition dipole, as the result of a chromophore reorientation in the Pr→Pfr phototransformation. The fact that blue light absorbed by flavin preferentially enhances the forward phototransformation of phytochrome while inhibiting the reversion may have an important implication in the high irradiance responses in plants in terms of a preferential accumulation of Pfr by blue light excitation.  相似文献   

3.
Abstract The rate of hypocotyl longitudinal growth in seedlings of Sesamum indicum L. is strongly inhibited by continuous blue light (cBL)† and slightly by continuous far-red light while continuous red light (cRL) or red light pulses are hardly effective from 60 h after sowing onwards. Between 36 and 60 h after sowing the growth rate responds to red light pulses the effect of which is fully reversible by long wavelength far-red light. When seedlings are kept in cBL for 3 days and then treated with red light hypocotyl growth rate responds strongly. However, RL effectiveness decreases with time after transfer from BL to RL. BL → darkness transfer experiments with different levels of Pfr established at the beginning of darkness show that after a BL pretreatment phytochrome (Pfr) alone is capable of fully controlling growth rate. When white light (WL) is given no BL effect is detectable in weak WL. Only high light fluxes maintain a typical BL growth rate. At medium WL fluxes elongation rate returns gradually to the dark rate. The simplest explanation of the data is that light absorbed by a separate BL photoreceptor is necessary to maintain responsivity to Pfr. With increasing age of the seedlings the requirement for BL increases strongly. On the other hand, brief light pulses—given to demonstrate photoreversibility of phytochrome—remain equally effective provided that responsivity to Pfr exists.  相似文献   

4.
DEPENDENCE OF Pfr/Ptot-RATIOS ON LIGHT QUALITY and LIGHT QUANTITY   总被引:2,自引:0,他引:2  
Abstract— Not only the spectral distribution of the light source determines the relative proportion of phytochrome in the Pfr(Pr) form, the Pfr/Ptot-ratio also depends strongly on the fluence rate of the irradiation. This dependence has been observed in the cotyledons of etiolated mustard seedlings for blue light of fluence rates below 20 Wm-2. It has also been observed for white light and seems to be a characteristic of the phytochrome system resulting from the involvement of phytochrome thermal reactions as well as Pr Pfr photoconversions. The fluence rate dependence of Pfr/Ptot-ratios can be used to analyze the characteristic transformations of the phytochrome system. Phototransformations together with a fast thermal transformation (τ½⋍ 3min) are consistent with the results obtained for blue and white light.  相似文献   

5.
Abstract— In shoots of milo ( Sorghum vulgare Pers.) appearance of ribulosebisphosphate carboxylase (RuBPCase) and of translatable mRNA for its small subunit is stimulated strongly by red light (R, operating through phytochrome) and UV-A light (UV-A). Ultraviolet-A is more effective than R.
The mode of coaction between phytochrome and light absorbed by the blue/UV-A light photoreceptor ('cryptochrome') was analyzed in detail in case of enzyme appearance. Fluence rate dependencies, lagphases and the time course of the response are compatible with the view that UV-A intensifies a process which is occurring in R alone albeit at a lower rate.
With both light qualities the light effect is fully reversible by far-red light up to 1 h. This means that during this period only phytochrome (Pfr) controls the terminal response, i.e. the actual appearance of RuBPCase. During this 1 h period after the onset of light UV-A or R have no effect on the level of translatable mRNA for the small subunit of RuBPCase indicating that it requires more than 1 h for the light signal to affect gene expression.
When R and UV-A are given longer onset of escape from full reversibility is observed at the same time for both light qualities in the case of RuBPCase appearance. The extent of the reversible response is greater after UV-A pretreatment than after a R pretreatment.
It is argued that the data are consistent with the concept that phytochrome (Pfr) controls the terminal photoresponse, in the present case appearance of RuBPCase, while light absorbed via cryptochrome leads to an increase in responsiveness of the RuBPCase producing machinery towards Pfr.  相似文献   

6.
Abstract— The in vivo photostationary state, φfr= ([ P fr]fr/[ P ]), of phytochrome in far red light has been determined in mustard seedling cotyledons by three different methods. The φfr is a function of the length of time of etiolation ( t = 36 hr, φfr= 0·14; t = 72 – 120 hr, φfr= 0·075). The calculated φr= 0·8. The amount of P tot is strongly dependent on the time of onset of far red light. These data imply that it would be almost impossible to maintain a constant level of P fr in mustard cotyledons over a considerable period of time.  相似文献   

7.
Abstract— Face-to-profile chloroplast movement in Mougeotia was induced by sequences of strong blue and red short irradiations. This type of response occured only when blue light was applied prior to or simultaneously with red light, and far-red irradiation was necessary after the sequence to cancel the remaining gradient of the far-red absorbing form of phytochrome Pfr. The dependence of the response magnitude on blue and red light sequences was studied for a wide range of light durations and dark intervals. The relationship between the response and the dark interval points to the lack of direct coupling between phytochrome and blue-absorbing “cryptochrome”. It was postulated that a photoproduct having a life-time of2–3 min is formed by the blue-light-mediated reaction. This photoproduct interacts with phytochrome during its transformation or with its final Pfr form.  相似文献   

8.
In the blue spectral region, the phototransformation difference spectrum of oat phytochrome extracted as Pfr differs from that of phytochrome extracted as Pr. The difference absorbance maximum for phytochrome extracted as Pfr is at 420 nm, while that extracted as Pr is at 412 nm. The phototransformation difference spectrum measured in the blue in oat coleoptile tips without inner leaves, corresponds very well with that of phytochrome as extracted in its Pfr form. There is, however, a slight apparent attenuation of the blue difference band relative to those in the red-far-red. In coleoptile tissue containing inner leaves, the blue difference band is relatively even more highly attenuated. A similar attenuation is observed in the blue, in the protochlorophyllide to chlorophyllide phototransformation difference spectrum. In the spectrum measured with excised coleoptile without inner leaves, there is a small attenuation, while in coleptile tissue with inner leaves the attentuation is nearly 9-fold. These data suggest that the observed attenuation is probably artifactual. Neither instrumental non-linearity nor fluorescence induced by the measuring beam could explain the observed attenuation. It is suggested that the observed attenuation is probably mainly the result of wavelength dependent scatter amplification, the amplification in the blue being attenuated by the high background absorption of other pigments in this region.  相似文献   

9.
Abstract— The influence of amino acid prestarvation on both the resistance to u.v. and the postirradiation repair synthesis of E. coli 15 T- 555-7 thy meth arg trp and E. coli B/r (HCR+) was followed. Prestarvation increased the number of survivors about 30–100 fold in both strains at doses 600-1200ergs/mm2. In contrast to survival no increase in repair synthesis was observed. Thus, the increase in survival has to be brought about by a mechanism which seems to be independent of additional repair synthesis.  相似文献   

10.
Abstract— Fluorescence spectra of native rye phytochrome were determined under different light conditions at liquid nitrogen temperature. Fluorescence spectrum of the red-light-absorbing form (Pr) had a major peak at about 685 nm (14 600 cm−1) and a broad sub-peak at about 515 nm (19 400 cm−1). The peak height at 685 nm was reduced by irradiation with monochromatic light of 640 nm, and a new peak became obvious at about 702 nm (14250 cm−1). This spectral change was almost completely reversed by subsequent irradiation with 700-nm light. Fluorescence spectrum of the photoequilibrium mixture of Pr and far-red-light absorbing form under continuous red light showed a sharp peak at about 685 nm having a peak height ca. 12% of Pr, and a broad sub-peak at about 508 nm (19 700 cm−1). Light of 730 nm did not reduce the peak height at about 685 nm but induced a new shoulder at about 699 nm (14300 cm−1). Monochromatic light of 640 and 700 nm given following the light of 730 nm could not reverse the spectral change at 699 nm induced by the irradiation with 730-nm light. Fluorescence spectrum of Pr in partially degraded phytochrome was similar to that in native phytochrome but the peak position in the red region was shifted by about 5 nm (100 cm−1) to the blue.  相似文献   

11.
Abstract— The duration of the far-red light-absorbing form of phytochrome (Pfr) of the photoreceptor pool involved in the control of seed germination was investigated for Datura ferox seeds. These seeds require both Pfr and alternating temperatures (20/30°C) to germinate. After 24 h imbibition (25°C), the seeds received pretreatment-light pulses providing different phytochrome photoequilibria (Pfr/P), followed by a 24 h dark incubation (25°C), and test-light pulses providing different Pfr/P immediately prior to transfer to alternating temperatures. Germination increased with increasing Pfr/P provided by the test-light pulses, but was unaffected by the pretreatment-light pulses. This suggests that phytochrome synthesis, phytochrome degradation and phytochrome-mediated changes in response to phytochrome were negligible. In other experiments, red light-pretreatment pulses were followed by dark incubations (25°C) of different duration before transfer to alternating temperatures. The proportion of Pfr remaining after the 25°C incubation period was estimated by comparing germination rates with those of seeds that received test-light pulses of known calculated Pfr/P immediately prior to the start of the cycles of alternating temperatures. More than 80% of the Pfr established by a Pfr/P= 0.87 light pulse was present and active even after 48 h dark incubation at 25°C. Surprisingly, when a pretreatmentlight pulse providing a Pfr/P= 0.70 was given, the reduction in [Pfr] was significantly faster.
Germination of Datura ferox seeds is under the control of a highly stable (type II like) phytochrome pool. Apparently, this pool follows Pfr dark reversion to the red light-absorbing form, the times to reach half the original Pfr pool being > 96 h or <14 h after light pulses providing Pfr/P= 0.87 or 0.70, respectively.  相似文献   

12.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

13.
Abstract— The irradiance and wavelength dependence of phytochrome destruction in vivo was analysed in etiolated cotyledons of Cucurbita pepo L. and etiolated seedlings of Amaranthus caudatus L. In contrast to grass seedlings, the rate of P tot destruction could only be saturated by light sources that establish relatively high P fr levels (about 50% of total phytochrome, corresponding to the photostationary state established by 693 nm light). To explain the irradiance dependence of P tot destruction in dicots at irradiances above 0.1 Wm-2, where the light reaction is at least one order of magnitude faster than P fr destruction, we suggest there is a fast intercalary dark reaction between photoreaction and destruction. This dark reaction is probably—as in grass seedlings—the binding of P fr to a receptor site. We conclude that the differences between dicots and grass seedlings with respect to the phytochrome system are of a quantitative rather than a qualitative nature.  相似文献   

14.
Abstract— The responses of stomata from Paphiopedilum harrisianum , Orchidaceae, to light and CO2 were studied in epidermal peels. Stomatal opening under red light was indistinguishable from that in darkness, whereas blue light promoted opening above dark levels. The ineffectiveness of red light in causing stomatal opening was confirmed in the presence of 100 μ M KCN; average apertures in both darkness and red light were 53% of those measured in the absence of the inhibitor, whereas under blue irradiation, the KCN inhibition was only 30%, with average apertures two-fold of those measured under red light or darkness. Fluence rate response curves under blue light were typical of a single photoreceptor; removal of CO2 increased aperture values without a significant light-CO2 interaction. The lack of a stomatal red light response contrasts with results obtained in species with chlorophyllous stomata in which red light consistently causes stomatal opening, and suggests that the previously reported red light responses in stomata from intact Paphiopedilum leaves resulted from indirect effects, such as depletion of intercellular CO2 by mesophyll photosynthesis. In isolation, Paphiopedilum stomata appear to rely on a blue light photosystem for their responses to light and fail to open under red light because of their lack of guard cell chloroplasts.  相似文献   

15.
Abstract— Single-celled protonemata of Adiantum capillus-veneris were cultured under continuous red light for 6 days and then in the dark for 15 h. Brief local exposure of a flank (5 times 20 /mi) of the subapical region of a protonema to a microbeam of red light effectively induced a phototropic response toward the irradiated side. The degree of the response was dependent upon the fluence of the red light. Red/far-red reversibility was typically observed in this photoreaction, showing that phytochrome was the photo-receptive pigment. When the flank was irradiated with a microbeam of linearly polarized red and far-red light, red light with an electrical vector parallel to the cell surface was most effective. However, the far-red light effect was most prominent when its electrical vector was normal to the cell surface. These polarized light effects indicate the different dichroic orientation of Pr (red-light-absorbing form of phytochrome) and Pr (far-red-light-absorbing form of phytochrome) at the cell flank.  相似文献   

16.
Abstract— Involvement of phytochrome in the regulation of nitrate reductase (NR) and nitrite reductase (NIR) activities in excised, etiolated leaves of Zea mays (L.) variety 'Ganga-5' is demonstrated using low energy and high irradiance responses of phytochrome action. Photoreversibility by far-red light of red light stimulated increases in NR and NIR activities was lost by 2 h. Red light given to the leaves, when induction by NO-3, was saturated, further increased both enzyme activities. Even if red light was given 4–8 h before NO-3, it still increased both NR and NIR activities.  相似文献   

17.
Abstract— A series of dose response curves was worked out under steady state conditions for mediation of the polarotropic response of the chloronema of the fern Dryopreris filix-mas (L .) Schott. The dose response curves show changes in slope with wavelength. In red and u.v. the slope values are higher than in blue. As a consequence the relative height of the peaks in red, blue, and u.v. and the fine characteristics in blue of the action spectra calculated on the basis of these dose response curves change decisively with different response levels taken for calculation. Therefore, a final decision cannot be made as to what photoreceptor(s) might be involved besides phytochrome. However, at low response levels the action spectrum looks similar to those action spectra described for a variety of other blue-u.v.-mediated photoresponses, which generally are believed as being indicative for a flavin. The findings clearly indicate that in cases such as Dryopteris and in cases, where action spectra were done only at one arbitrarily chosen dose, action spectroscopy may not allow the unequivocal identification of the photoreceptor(s) involved.  相似文献   

18.
O ne clear evidence of u.v. injury is the manifestation of chlorosis after leaf irradiation, and such chlorosis can be photorepaired by blue light[1]. We found that such u.v.-accelerated chlorosis could be prevented in the dark by applying N6 benzyladenine (BA), a synthetic cytokinin, either before or after u.v. irradiation. Cytokinins are known to retard natural senescence of detached leaves kept in the dark [2]. The present finding suggests that u.v. damage may accelerate the natural senescence process of detached leaves kept in the dark. N. glutinosa leaves were used in this experiment, because chlorosis develops quickly (within one week) when the mature leaves are detached and incubated in the dark. The plants were grown in a glasshouse without white-wash. The light intensity at noon often reached 9000 ft-c., and the temperature ranged from 19–35°C. The leaves shown in Fig. 1 were from mature plants, i.e. plants with the terminal growing point developed into a flower bud. The floral buds were cut off several days before the leaves were detached for exposure to u.v. light.  相似文献   

19.
Abstract— Much of the experimental data in the phytochrome literature has been obtained using a small-molecular-weight protein fragment. Hence, several properties of phototransformation were re-examined using large-molecular-weight rye phytochrome. The kinetics of phototransformation are first-order, both for the conversion of Pr to Pfr and for the reverse reaction. The quantum yield of phototransformation was found to be 0·28 mol Einstein-1 for the conversion of Pr to Pfr and 0·20 mol Einstein-1 for the conversion of Pfr to Pr. Intermediates in phototransformation were measured by cycling the pigment with high-intensity mixed red and far–red light. The difference spectrum of these intermediates between 367 and 575 nm was found to be similar to that previously reported for oat and pea phytochrome. Analysis of intermediate decay indicated complex kinetics and not a single first-order species. Transient absorbancy changes in the blue region of the spectrum upon actinic illumination could be attributed to differential rates of initial bleaching of the two forms of the pigment and a consequent alteration in the proportion of the two forms in the mixture until photostationary equilibrium is re-established.  相似文献   

20.
Abstract— We have investigated the possibility of the involvement of a blue light fluence-rate sensing photoreceptor in the light acclimation of chloroplast components in light-grown pea seedlings. Low lightgrown seedlings were acclimated for 2 days to either 20 or 200 μmolm-2s-2 of white, blue-enriched, or broad-band red light. An increase in blue-enriched light fluence rate was more effective than that of red light in bringing about both inhibition of internode growth and the enhancement of the chlorophyll a/b ratio. Ribulose 1,5-bisphosphate carboxylase/oxygenase and cytochrome f protein levels, per unit cell, also increased more markedly (around two-fold) in response to an increase in blue light. The 23 kDa polypeptide of the oxygen-evolving complex and the light-harvesting chlorophyll d b protein of photosystem II apoprotein levels vaned under all wavelengths to a lesser extent, correlating with total protein levels or greening. These data are consistent with the hypothesis of a role for a blue photoreceptor in detecting low versus high fluence rate of light, and subsequently controlling the light acclimation responses. Nevertheless photosynthesis or other mechanisms of fluence-rate photoperception must also be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号