共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
针对像元尺寸为50μm×50μm的长波红外32×32元制冷型凝视焦平面阵列探测器的需要,设计了一种工作波长位于15~35μm的透射式长波红外显微成像光学系统。该系统采用一次性成像方式,且主要由系列透镜构成,其中冷光阑置于光路的出瞳位置。通过对称双胶合透镜组合来校正像差,在-20~40℃温度范围采用光学被动补偿技术实现消热像差。仿真结果表明,当所设计的光学系统的中心波长、焦距、数值孔径、有效放大倍率和空间分辨率分别为27μm,14mm,0.25,10和0.1mm时,在10lp·mm-1特征频率处调制传递函数(MTF)值达到0.369,系统包围圆能量集中度超过80%,能够得到清晰可辨的物像,满足对冷光学系统短结构、高分辨率的应用需求。 相似文献
3.
报道了地面长波红外遥测的新进展 ,具体阐述了窗扫时空调制傅里叶光谱成像技术的实现过程.演示装置基于角锥反射镜M ichelson干涉具 ,构成了空间调制干涉 ;采用了制冷型长波红外焦平面探测器组件 ,通过对数据立方体的采集、重组、基线校正、切趾、相位校正和傅里叶变换等处理 ,实现了长波红外波段高光谱成像.自研的CHIPED-1长波红外高光谱成像原理实验装置的探测灵敏度指标噪声等效辐射通量密度NESR在单次采样时达到了5.6 × 10-8 W · (cm-1 · sr · cm2 )-1 ,与商品化时间调制干涉高光谱成像仪相当 ;反映了技术的先进性 ,并留有较大的改进空间.通过测试聚丙烯薄膜的透过率曲线 ,CHIPED-1红外高光谱成像原理实验装置的光谱响应范围达到了11. 5 μm.文章还以室外高楼和乙醚气体的探测实验为例 ,研究了二维分布化学气体VOC的高光谱成像探测方法.在复杂背景和低试验浓度情况下 ,从同一波数的红外光谱切片上 ,观察不出乙醚蒸气的存在 ,但是进行了差谱处理后 ,可以清楚看到乙醚蒸气的空间分布.高光谱方法应用在有机蒸气VOC的红外探测领域 ,相对于宽波段热成像方法 ,具有灵敏度高、抗干扰能力强和识别种类多等诸多优势. 相似文献
4.
折/反混合式长波红外成像光谱仪光学系统设计 总被引:1,自引:0,他引:1
为了实现遥感目标的长波红外高光谱成像,满足目标探测对多信息量的需求,设计了高光谱分辨率长波红外(8~12 μm)成像光谱仪。前置望远系统采用离轴三反系统,以实现无遮拦、大口径及宽视场成像设计;光谱分光系统分别采用折射式和反射式结构进行优化设计。设计结果显示,采用折射式结构,可得到通光孔径为100 mm,F数为2,光谱分辨率16 nm,空间分辨率150 μrad,冷光阑效率100%,成像质量接近衍射极限的光学系统;采用反射式结构,为了保证光学系统无挡光,需采用多片离轴反射镜,增加了系统的非对称性,使得系统的像散、彗差和场曲难以校正到最佳状态。设计结果表明:折/反混合式成像光谱系统具有光谱分辨率高、成像质量好和结构合理等优点,点斑均方根直径与国内现有探测器像素尺寸匹配。 相似文献
5.
大孔径红外光学系统往往易受自重和环境温度影响造成像质恶化,引入自适应光学技术的红外自适应系统能够很好地解决该问题,为此设计了一个用于Hartmann-Shack波前检测的红外自适应光学系统。重点设计了10×可见光与中波红外双波段望远镜,物镜为卡赛格林反射物镜组,无需消色差,在可见光与中波红外2个波段实现了消色差目镜设计;还设计了红外成像中继光学系统,可实现100%冷光阑效率,并补偿望远镜在中波红外波段的残余像差,使最终设计的光学系统MTF接近衍射极限,达到了0.5以上,满足设计指标要求。 相似文献
6.
为全面分析杂散光对红外系统成像质量的影响,设计了可见波段0.4 μm~0.7 μm、红外波段3 μm~5 μm,视场角均为2.27°×2.27°的共孔径成像光学系统。分析了杂散光来源,分别研究了带内与带外杂散光对其红外通道成像质量的影响。对于带内杂散光,设计了消杂光结构,采用FRED软件模拟分析了带内杂光抑制能力,结果表明:带内杂散光得到较好抑制,其鬼像影响可忽略不计,太阳杂散光抑制水平PST达到设定的10-8阈值量级。对于带外杂散光,主要研究了1.064 μm和2.6 μm两个波长带外激光对红外成像系统的影响,并利用有限元仿真计算,结果表明:系统反射镜温升达到703 K时,向外发出较强带内红外辐射,到达像面的辐射功率为0.195 mW,可对红外成像面造成强烈噪声干扰。 相似文献
7.
8.
对含有一个用金刚石车削技术制作的衍射光学元件(DOE)的折/衍混合长波红外(LWIR)凝视成像系统进行了杂散光分析.利用LightTools软件对DOE的不同衍射级次、光学表面多次反射、镜筒内壁反射等主要杂散光源进行了模拟和分析,对6种二次反射的模拟结果表明,对归一化的光源,理想光路的像面辐照度为100 W/mm2,每种二次反射会给像面带来0.01 W/mm2的辐照度;反射率为10%的镜筒内壁给像面带来的辐照度为0.01 W/mm2.利用该LWIR凝视成像光学系统进行了相关实验,实验结果证明了上述分析的正确性,表明该项分析有利于对LWIR凝视成像系统光学性能的进一步理解和杂散光的抑制. 相似文献
9.
设计了一组长焦距轻量型变焦光学系统,焦距为30 mm ~ 300 mm, 视场角为1.1°~ 11.4°,F数为3.5。由于变焦系统焦距较长,并且需要在控制口径的前提下减轻质量,经过对变焦理论进行分析并结合实际情况,采用正组补偿,运用Zemax软件,对变焦系统同时进行像质优化与轻量化设计,优化过程中加入非球面,达到简化结构,提高像质的作用; 在不影响像面照度的情况下,对轴外光线进行了适当的拦光,使得有效口径尽量变小,同时对系统的部分透镜材料进行替换,平衡了高像质与轻质量间的矛盾,最终使系统的总体质量从937 g减小到584 g,且系统像质良好,轴上调制传递函数在120 lp/mm处大于0.3,轴外调制传递函数在120 lp/mm处大于0.2,各视场的调制传递函数在40 lp/mm处大于0.5,畸变小于1%。根据变焦运动方程,运用Matlab软件进行编程计算,得到反映变倍组与补偿组运动过程的凸轮曲线,在变焦的过程中像面比较稳定,调焦顺畅。 相似文献
10.
针对传统长波红外成像光谱仪难以同时实现弱遥感信号下高信噪比和小型化的现状,在数值孔径NA为0.19和0.33,工作波段为8~12μm下,设计并对比分析了两种具有同心结构的Offner凸面光栅和Dyson凹面光栅光谱仪,借助Zemax软件,获得了它们的最优解。当NA1=0.19时,两者均能理想成像,Offner结构大小为245mm×213mm×111mm,调制传递函数(MTF)大于0.38,光谱分辨率为35nm,谱线弯曲小于4.8%,色畸变小于12.8%;Dyson结构大小为308mm×61mm×49mm,MTF大于0.48,光谱分辨率为12nm,谱线弯曲小于0.047%,色畸变小于0.138%。当NA2=0.33时,Offner结构无法理想成像,Dyson结构仍有很好的像质,大小为317mm×88mm×88mm,MTF大于0.71,光谱分辨率为1nm,谱线弯曲小于0.015%,色畸变小于0.028%。设计结果表明,长波红外波段中,相对于Offner结构,Dyson结构具有数值孔径大、体积小、光谱分辨率和传递函数高以及谱线弯曲和色畸变小的优点。 相似文献
11.
宽波段红外成像技术可以获取丰富的波段信息,在目标识别和频谱分析中具有独特的优势。设计了一种1.3~5μm宽波段短中波红外光学系统,该光学系统采用二次成像设计,包括7块透镜和2片反射镜,其中使用了2片硅非球面和1片硒化锌基底衍射面用以校正像差和色差。利用光学设计软件给出了系统的光学参数和二维外形结构图,并且对其像质和冷反射进行了系统分析。该系统可以实现在工作波段1.3~5μm宽波段中成像,其F数为2,满足100%冷光阑效率。该系统结构紧凑,像质较好,能够实现宽波段成像要求。 相似文献
12.
为了实现对远处目标的瞄准、识别与跟踪,光电跟踪系统往往需要其光学系统可连续变焦,并且具有大变倍比、宽波段、光轴一致性高等特性。详细阐述了连续变焦光学系统的基本构造形式、初始结构参数估算等,并在确定了相关技术参数的基础上,设计了一种变倍比为40×的宽波段连续变焦光学系统。设计的连续变焦光学系统全部使用球面镜,易于加工,成像质量较好,各视场MTF值在150 lp/mm处均大于0.2,并且凸轮曲线平滑,无拐点,杂散光控制较好,对系统影响很小。最后通过外景试验测试,该系统光轴一致性小于0.1 mrad,系统的各项性能指标都可满足设备的使用要求,为光电跟踪系统的工程化提供了参考价值。 相似文献
13.
双波段/多波段融合成像技术受到普遍重视,使得双波段光学系统尤其是可见光/长波红外(VIS/LWIR)成像系统成为研究的重要方向之一。在分析反射式、折反式和折射式双波段成像系统的结构形式以及常用的折射共窗口系统的组成和特点的基础上,针对双波段系统在应用中的欠缺,设计了一款可用于手持式设备的VIS/LWIR共窗口折射望远系统,系统的主要技术指标为:0.6~0.8μm(VIS),8~12μm(LWIR),f′VIS=47 mm,f′IR=58mm,2ω=9.8°,FVIS=2,FIR=1.3。设计结果符合各项指标,像质在两个波段均满足使用要求。整个光学系统尺寸为51mm×93mm×136mm,结构紧凑,实用性强。 相似文献
14.
采用双电机联动控制变倍组与补偿组的变焦方案替代传统的曲线套筒,实现了采用全透射式结构型式,相对口径为1/4,焦距变化范围为342.76 mm~13.15 mm连续变焦光学镜头的机械补偿式变焦。将变倍组设计成步进模式,作匀速运动,补偿组设计成位置跟踪模式,按凸轮曲线作变速运动,采用双电机全数字伺服控制凸轮(CAM)算法,将光学设计计算的变倍镜和补偿镜位置对应关系转变为对应的脉冲数输入到CAM表中,从而确定2个不同运动速度轴之间的位置对应关系。试验结果表明:双电机控制的变倍组和补偿组位置分辨率达到0.18 m,光轴一致性水平方向达到1.9,垂直方向达到1.3。 相似文献
15.
16.
为了模拟红外目标由远及近的飞行过程,结合高变倍比红外连续变焦系统与大口径投影系统设计了一款红外目标模拟系统.连续变焦系统变倍比为20倍,工作波段为8~12μm,大口径投影系统口径为300mm,工作温度为-30~40℃.基于对系统参数的计算与分析,通过推导的消热差及消色差方程对材料进行合理选择及光焦度分配,实现了光学被动消热差设计,应用动态光学理论对变焦凸轮运动曲线进行了计算与绘制.系统成像质量分析结果表明,变焦过程中像面稳定,成像质量良好.该系统可以实现高倍率红外目标飞行距离的连续变化模拟,具有变倍比高,体积小,像质好,环境适应能力强等特点. 相似文献
17.
针对新一代光电吊舱对轻小型长焦距高清红外变焦成像系统的迫切需求,采用分辨率为1280×1024、像元尺寸为15μm大面阵中波制冷红外探测器,设计了一款变倍比为48、焦距范围为25~1200 mm的中波红外连续变焦光学系统。为了实现小型化设计,采用二次成像、正组机械补偿、平滑换根、结合后组温阑切换变F数,以及光路巧妙折转的设计思路及方法,在保证100%冷阑效率的同时,实现了红外变焦系统的大变倍比与小型化设计。结果表明,该光学系统在-40℃~+60℃温度范围内具有良好的成像质量,且光学最大口径为230 mm,光学总长仅为350 mm,该系统具有结构紧凑、变倍比大、焦距长、分辨率高、成像质量良好等优点,可满足新一代红外成像系统的要求。 相似文献
18.
为了获取足够的目标信息,充分利用中波红外和长波红外的光谱信息,建立了谐衍射中、长波红外超光谱成像系统.利用谐衍射元件独特的色散特性,将谐衍射透镜应用于中、长波红外超光谱成像系统中,使系统在中波红外3.7—4.8 μm和长波红外8—12 μm的2个红外大气窗口内获取数百个光谱图像.设计结果表明,中波红外波段,在18对线/mm处光学系统的调制传递函数(MTF)大于0.55,长波红外波段,在13对线/mm处光学系统的MTF大于0.5,光学系统的衍射环绕能,在中波红外波段30 μm半径范围内大于85%,在长波红外 相似文献
19.
使用傅里叶变换光谱仪(FTIR)测试甚长波宽波段(6.4~15μm)红外探测器响应光谱的过程中,发现短波方向响应光谱异常。通过分步测试分析发现:探测器和放大器工作在非线性工作区导致某些情况下仪器信号发生饱和,引起了短波方向响应光谱畸变的现象。对FTIR测量甚长波宽波段(6.4~15μm)红外探测器响应光谱的畸变现象进行了分析,认为探测器的响应时间是影响其响应光谱的重要因素,并通过试验确定了测试系统对不同探测器所设置的测试参数,消除了响应光谱畸变的现象,并提高了测试准确度。 相似文献
20.