首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of nonlinear energy sink (NES) on vibration suppression of a simply supported beam are investigated in this work. The slow flow equations of the system are derived by using complexification–averaging method, and the validity of the derivation is verified. By comparing the vibration absorption of single and parallel NESs of equal mass, it is found that the latter exhibits superior vibration absorption performance. In addition, the parallel NES can eliminate higher branch responses of the system under the harmonic load. Furthermore, it is found that parallel NES can eliminate the higher branches of the system more effectively by tuning nonlinear stiffness and damping. Moreover, the thermal effect on natural frequencies of the simply supported beam is considered, and the influences of the parallel NES’s parameters on the energy dissipation rate under shock load are investigated. The nonlinear responses of the simply supported beam with parallel NES under harmonic load and with the increase of temperature are described.  相似文献   

2.
The performance of the nonlinear energy sink (NES) that composed of a small mass and essentially nonlinear coupling stiffness with a linear structure is considerably enhanced here by including the negative linear and nonlinear coupling stiffness components. These negative linear and nonlinear stiffness components in the NES are realized here through the geometric nonlinearity of the transverse linear springs. By considering these components in the NES, very intersecting results for passive targeted energy transfer (TET) are obtained. The performance of this modified NES is found here to be much improved than that of all existing NESs studied up to date in the literature. Moreover, nearly 99 % of the input shock energy induced by impulse into the linear structures considered here has been found to be rapidly transferred and locally dissipated by the modified NES. In addition, this modified NES maintains its high performance of shock mitigation in a broadband fashion of the input initial energies where it keeps its high performance even for sever input energies. This is found to be achieved by an immediate cascade of several resonance captures at low- and high- nonlinear normal modes frequencies. The findings obtained here by including the negative linear and nonlinear stiffness components are expected to significantly enrich the application of these stiffness components in the TET field of such nonlinear oscillators.  相似文献   

3.
We study targeted energy transfers (TETs) and nonlinear modal interactions attachments occurring in the dynamics of a thin cantilever plate on an elastic foundation with strongly nonlinear lightweight attachments of different configurations in a more complicated system towards industrial applications. We examine two types of shock excitations that excite a subset of plate modes, and systematically study, nonlinear modal interactions and passive broadband targeted energy transfer phenomena occurring between the plate and the attachments. The following attachment configurations are considered: (i) a single ungrounded, strongly (essentially) nonlinear single-degree-of-freedom (SDOF) attachment—termed nonlinear energy sink (NES); (ii) a set of two SDOF NESs attached at different points of the plate; and (iii) a single multi-degree-of-freedom (MDOF) NES with multiple essential stiffness nonlinearities. We perform parametric studies by varying the parameters and locations of the NESs, in order to optimize passive TETs from the plate modes to the attachments, and we showed that the optimal position for the NES attachments are at the antinodes of the linear modes of the plate. The parametric study of the damping coefficient of the SDOF NES showed that TETs decreasing with lower values of the coefficient and moreover we showed that the threshold of maximum energy level of the system with strong TETs occured in discrete models is by far beyond the limits of the engineering design of the continua. We examine in detail the underlying dynamical mechanisms influencing TETs by means of empirical mode decomposition (EMD) in combination with wavelet transforms. This integrated approach enables us to systematically study the strong modal interactions occurring between the essentially nonlinear NESs and different plate modes, and to detect the dominant resonance captures between the plate modes and the NESs that cause the observed TETs. Moreover, we perform comparative studies of the performance of different types of NESs and of the linear tuned mass dampers (TMDs) attached to the plate instead of the NESs. Finally, the efficacy of using this type of essentially nonlinear attachments as passive absorbers of broadband vibration energy is discussed.  相似文献   

4.
The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES) are investigated. The linear system is excited by a harmonic and random base excitation, consisting of a mass block, a linear spring, and a linear viscous damper. The NES is composed of a mass block, a linear viscous damper, and a spring with ideal cubic nonlinear stiffness. Based on the generalized harmonic function method,the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal...  相似文献   

5.
The context of present work is related to the study of strongly nonlinear absorbers (NESs) aimed to attenuate vibrations induced in a single degree-of-freedom oscillator and working under the principle of targeted energy transfer (TET). The purpose motivated by practical considerations is here to establish a design criterion permitting to first ensure whether NES absorber is active or not and second to provide a nonlinear stiffness lower bound for optimal energy absorption during pumping phases. An asymptotic expansion of dynamic equations of motion under transient regime enables to emphasize a new definition of activation energy and to investigate the influence of damping upon the efficiency of one-way channeled energy transfer. Methodology is straightforwardly extended to the case of multiple NES attached in parallel to the primary oscillator. Numerical benchmark simulations corroborate the reliability and robustness of proposed design procedure.  相似文献   

6.
A parallel nonlinear energy sink(NES) is proposed and analyzed. The parallel NES is composed of a vibro-impact(VI) NES and a cubic NES. The dynamical equation is given, and the essential analytical investigation is carried out to deal with the cubic nonlinearity and impact nonlinearity. Multiple time-scale expansion is introduced, and the zeroth order is derived to give a rough outline of the system. The underlying Hamilton dynamic equation is given, and then the optimal stiffness is expressed. The clearance is regarded as a critical factor for the VI. Based on the periodical impact treatment by analytical investigation, the relationships of the cubic stiffness, the clearance, and the zeroth-order attenuation amplitude of the linear primary oscillator(LPO) are obtained.A cubic NES under the optimal condition is compared with the parallel NES. Harmonic signals, harmonic signals with noises, and the excitation generated by a second-order?lter are considered as the potential excitation forces on the system. The targeted energy transfer(TET) in the designed parallel NES is shown to be more e?cient.  相似文献   

7.
NES cell     
A broadband adaptive vibration control strategy with high reliability and flexible versatility is proposed. The high vibration damping performance of nonlinear energy sink (NES) has attracted attention. However, targeted energy transfer may cause severe vibration of NES. Besides, it is difficult to realize pure nonlinear stiffness without the linear part. As a result, the reliability of NES is not high. The low reliability of NES has hindered its application in engineering. In addition, the performance of NES depends on its mass ratio of the primary system, and NES lacks versatility for different vibration systems. Therefore, this paper proposes the concept of NES cell. The advantages of the adaptive vibration control of NES are applied to cellular NES. By applying a large number of NES cells in parallel, the reliability of NES and its versatility to complex vibration structures are improved. An elastic beam is used as the primary vibration structure, and a limited NES is used as the cell. The relationship between the vibration suppression effect of NES cells and the number of NES cell is studied. In addition, the effect of the distribution of NES cells on the multi-mode resonance suppression of the beam is also studied. In summary, the mode of the primary structure can be efficiently controlled by a large number of lightweight NES cell. Therefore, the lightweight NES cell is flexible for vibration control of complex structures. In addition, it improves the reliability of NES applications. Therefore, the distributed application of NES cells proposed in this paper is a valuable vibration suppression strategy.  相似文献   

8.
陆子  何毅翔  张岚斌  代胡亮  王琳 《力学学报》2022,54(11):3147-3156
流致振动现象广泛存在于机械、航空、土木和石油等重要工程领域, 为防止工程结构因流致振动行为而造成疲劳破坏, 有必要对稳定性、动力学响应及其振动控制做深入研究. 本文提出了一种由弹簧和质量块构成的非线性吸能器(nonlinear targeted energy transfer, NTET), 研究了该非线性吸能器对弹性支承圆柱体涡激振动的被动控制影响机制. 基于能量法推导了圆柱体涡激振动非线性被动控制的耦合动力学方程, 通过设计非线性弹簧?质量块构型的NTET, 进一步开展了涡激振动控制的实验研究, 并与理论预测结果进行了较好的对比, 获得提升涡激振动控制效果的最佳参数值. 研究发现, NTET的质量、弹簧刚度以及弹簧预应力等参数会对涡激振动控制效果产生显著的影响. 本文研究结果表明, 该耦合系统中圆柱体和NTET均表现出周期性的稳态振动响应, NTET质量的改变会显著影响系统的耦合频率. 在无预应力状态下, NTET质量越大、刚度越小时, 有更好的减振效果. 当弹簧预应力逐渐增大时, NTET的非线性刚度逐渐变弱, 会降低涡激振动控制性能. 参数分析表明: 随着涡激振动控制性能的提升, 圆柱体的振幅逐渐较小, NTET的振幅逐渐增大, 能量传递效率逐渐提高. 研究结果可为工程中涡激振动控制策略的高效设计提供有用的理论支撑和实验数据.   相似文献   

9.
In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.  相似文献   

10.
This paper explores a clearance-type nonlinear energy sink (NES) for increasing electrical energy harvested from non-stationary mechanical waves, such as those encountered during impact and intermittent events. The key idea is to trap energy in the NES such that it can be harvested over a time period longer than that afforded by the passing disturbance itself. Analytical, computational, and experimental techniques are employed to optimize the energy sink, explore qualitative behavior (to include bifurcations), and verify enhanced performance. Unlike traditionally studied single-DOF NESs, both subdomains of the NES (i.e., on either side of the clearance) contain displaceable degrees of freedom, increasing the complexity of the analytical solution approach. However, closed-form solutions are found which quantify the relationship between the impact amplitude and the energy produced, parameterized by system properties such as the harvester effective resistance, the clearance gap, and the domain mass and stiffness. Bifurcation diagrams and trends therein provide insight into the number and state of impact events at the NES as excitation amplitude increases. Moreover, a closed-form Poincaré map is derived which maps one NES impact location to the next, greatly simplifying the analysis while providing an important tool for follow-on bifurcation studies. Finally, a series of representative experiments are carried out to realize the benefits of using clearance-type nonlinearities to trap wave energy and increase the net harvested energy.  相似文献   

11.
In the field of seismic protection of structures, it is crucial to be able to diminish ‘as much as possible’ and dissipate ‘as fast as possible’ the load induced by seismic (vibration-shock) energy imparted to a structure by an earthquake. In this context, the concept of passive nonlinear energy pumping appears to be natural for application to seismic mitigation. Hence, the overall problem discussed in this paper can be formulated as follows: Design a set of nonlinear energy sinks (NESs) that are locally attached to a main structure, with the purpose of passively absorbing a significant part of the applied seismic energy, locally confining it and then dissipating it in the smallest possible time. Alternatively, the overall goal will be to demonstrate that it is feasible to passively divert the applied seismic energy from the main structure (to be protected) to a set of preferential nonlinear substructures (the set of NESs), where this energy is locally dissipated at a time scale fast enough to be of practical use for seismic mitigation. It is the aim of this work to show that the concept of nonlinear energy pumping is feasible for seismic mitigation. We consider a two degree-of-freedom (DOF) primary linear system (the structure to be protected) and study seismic-induced vibration control through the use of Vibro-Impact NESs (VI NESs). Also, we account for the possibility of attaching to the primary structure additional alternative NES configurations possessing essential but smooth nonlinearities (e.g., with no discontinuities). We study the performance of the NESs through a set of evaluation criteria. The damped nonlinear transitions that occur during the operation of the VI NESs are then studied by superimposing wavelet spectra of the nonlinear responses to appropriately defined frequency – energy plots (FEPs) of branches of periodic orbits of underlying Conservative systems.  相似文献   

12.
The system under investigation comprises a linear oscillator coupled to a strongly asymmetric 2 degree-of-freedom (2DOF) purely cubic nonlinear energy sink (NES) under harmonic forcing. We study periodic, quasiperiodic, and chaotic response regimes of the system in the vicinity of 1:1 resonance and evaluate the abilities of the 2DOF NES to mitigate the vibrations of the primary system. Earlier research showed that single degree-of-freedom (SDOF) NES can efficiently mitigate the undesired oscillations, if limited to relatively low forcing amplitudes. In this paper, we demonstrate that the additional degree-of-freedom of the NES considerably broadens the range of amplitudes where efficient mitigation is possible. Efficiency limits of the system with the 2DOF NES are evaluated numerically. Analytic approximations for simple response regimes are also developed.  相似文献   

13.
Integration of a nonlinear energy sink and a piezoelectric energy harvester   总被引:1,自引:0,他引:1  
A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink(NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric system is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the transient vibration, and a 1:1 transient resonance capture occurs between two subsystems.The investigation demonstrates that the integrated NES-piezoelectric mechanism can reduce vibration and harvest some vibration energy.  相似文献   

14.
研究了包含一类新型二自由度非线性能量阱的机械振动系统.建立非线性系统的运动微分方程,用泰勒级数展开近似表达二级振子所受到的非线性力.运用数值方法对该非线性能量阱的减振性能进行分析.从其结构参数以及初始能量的角度出发,研究其发生靶向能量传递的条件.结果表明:该非线性能量阱可以有效降低主结构的能量,其振动抑制效果明显优于单...  相似文献   

15.
针对一类基于夹片弹簧的压电振动能量收集器,利用材料力学莫尔积分理论建立了振荡俘能结构中夹片弹簧的等效刚度模型,通过万能拉伸试验机验证了模型精度。在此基础上,讨论了夹片弹簧刚度线性简化的两种途径:拉伸曲线线性拟合和固有频率修正。研究结果表明,从夹片弹簧拉伸曲线上看,将其等效成线性弹簧具有一定的合理性;而在实际振动能量收集器结构中,若振动加速度相对较小,通过固有频率修正法对夹片弹簧刚度进行线性简化,其幅频响应特性与非线性模型的特性相近。该研究成果为压电振动能量收集器的动力学和机电耦合模型简化提供了理论支撑。  相似文献   

16.
近些年,很多学者致力于利用非线性增强振动响应减少的效果或者能量采集器的效率。因而非线性系统的响应值需要从理论计算方面更准确地预测。另外,根据学者已取得的研究成就,非线性能量汇(NES)中存在的立方刚度非线性可以将结构中宽频域的振动能量传递至非线性振子部分。文章将一种由NES和压电能量采集器组成的NES-piezo装置与两自由度主结构耦合连接,系统受谐和激励作用。文章采用谐波平衡法和复平均法分别推导了系统稳态响应,参照数值结果,对比两种近似解析方法在求解强非线性系统稳态响应时的异同。计算结果表明,系统体现较弱非线性时,二者计算结果差异很小;当系统体现强非线性时,复平均法不能准确地呈现系统高阶响应,提高阶数的谐波平衡法能更准确地表示系统响应值。基于谐波平衡法和数值算法,讨论NES-piezo装置对于系统宽频域减振的影响。与仅加入非线性能量汇情况对比,结果表明NES-piezo装置不会恶化宽频域减振效果,并且在第一阶共振频率附近,可以稍微提高结构减振效率。另外,计算结果也表明,采用恰当的NES-piezo装置可实现宽频域范围的结构减振和压电能量采集一体化。此项研究工作为研究不同情形强非线性系统的响应提供了理论方法的指导。另外,研究结果也为宽频域范围的结构减振和压电能量采集一体化提供了理论依据。  相似文献   

17.
The new generations of compact high output power-to-weight ratio internal combustion engines generate broadband torsional oscillations, transmitted to lightly damped drivetrain systems. A novel approach to mitigate these untoward vibrations can be the use of nonlinear absorbers. These act as Nonlinear Energy Sinks (NESs). The NES is coupled to the primary (drivetrain) structure, inducing passive irreversible targeted energy transfer (TET) from the drivetrain system to the NES. During this process, the vibration energy is directed from the lower-frequency modes of the structure to the higher ones. Thereafter, vibrations can be either dissipated through structural damping or consumed by the NES. This paper uses a lumped parameter model of an automotive driveline to simulate the effect of TET and the assumed modal energy redistribution. Significant redistribution of vibratory energy is observed through TET. Furthermore, the integrated optimization process highlights the most effective configuration and parametric evaluation for use of NES.  相似文献   

18.
We study theoretically and experimentally the effect that anonlinear energy sink (NES) has on the steady state dynamics of a weaklycoupled system. The NES possesses essentially nonlinear(nonlinearizable) stiffness nonlinearity of the third degree. We findthat, in contrast to the classical linear vibration absorber, the NES iscapable of absorbing steady state vibration energy from the linearoscillator over a relatively broad frequency range. This results inlocalization of the steady state vibration in the NES, away from thedirectly forced subsystem. For a forward frequency sweep the localizedbranch of steady state motions is suddenly eliminated by a jump to alinearized low-amplitude motion, whereas, for a backward frequency sweepa reverse jump occurs. The difference in the frequencies of the twojumps introduces a nonlinear hysteresis loop. This work extends to thesteady state case of earlier transient passive energy pumping results.The notion of passively transferring vibration energy to an a prioridetermined NES, weakly attached to a main structure, is novel. The useof nonlinear energy sinks for passively absorbing energy from a linearmain structure can form the basis of relatively simple and modularvibration and shock isolation designs of mechanical systems.  相似文献   

19.
20.
动力吸振器作为一种振动控制单元被广泛运用于各种工程场合,但传统的线性吸振器只能实现窄带振动控制.文章在线性吸振器的基础上引入对称水平弹簧构建线性刚度与非线性刚度相结合的组合刚度非线性吸振器,以提升吸振器的吸振性能.考虑实际工程中可能的安装方式,分别建立水平弹簧接地安装和不接地安装的组合刚度非线性吸振器模型,利用谐波平衡法结合弧长延拓法解析求解动力学响应,并与数值结果相互验证,证明了求解结果的准确性.随后分析比较两种组合刚度非线性吸振器与线性吸振器以及非线性能量阱之间的吸振性能,发现水平弹簧接地安装类型的组合刚度非线性吸振器在保留线性吸振器优势的同时又改善其吸振频带窄的缺点,且与非线性能量阱相比在主共振频率附近的较宽频内吸振性能更优.在此基础上,讨论了水平弹簧参数以及吸振器阻尼对主结构振动幅频响应和稳定性的影响,最后观察分析主结构幅频响应曲线不稳定区内的复杂动力学行为.研究结果表明合适的设计参数能够使得主结构振动峰值较低的同时,频响曲线不稳定运动区域的范围也较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号